Compare commits
49 Commits
Advanced-M
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
| 48b016d8b7 | |||
| 8e4595f2ef | |||
| 99c0d3ed70 | |||
| 80c4ebfece | |||
| 8b6f1de822 | |||
| 719fc4d28a | |||
| 2a7eb93ebe | |||
| c099dfe760 | |||
| d84664b567 | |||
| 1091bbda32 | |||
| bec70facb2 | |||
| 75edad3d0a | |||
| 64820553c7 | |||
| 60a2b12b5f | |||
| 37556c7c81 | |||
| 6fdab5be30 | |||
| d07ac43f7b | |||
| 74afbfeab8 | |||
| 1715d2b46c | |||
| 296f233b28 | |||
| 32c2a5cef2 | |||
| 54d9699df8 | |||
| 8a15459fc8 | |||
| dee19b54ad | |||
| 4b802458ef | |||
| e92fc6e5a0 | |||
| b21236e5db | |||
| b897b13880 | |||
| 1a0af95fe7 | |||
| c8dce7d7d8 | |||
| f51afb42e0 | |||
| 2385446ac5 | |||
| 713809a82b | |||
| 55ff4aa693 | |||
| aa8056240a | |||
| 28c30c5ea7 | |||
| 742749457c | |||
| 6e480dce86 | |||
| 39274eb964 | |||
| 3b023d2104 | |||
| 9726ebbca0 | |||
| ab2d9f002b | |||
| 437d209200 | |||
| cccadc5d21 | |||
| 519c953fcb | |||
| c1a1f994ea | |||
| fee5486ea2 | |||
| 4a25414b92 | |||
| ae4806510b |
Binary file not shown.
Binary file not shown.
102
.gitea/workflows/Merge-Checker.yaml
Normal file
102
.gitea/workflows/Merge-Checker.yaml
Normal file
@@ -0,0 +1,102 @@
|
||||
name: Merge-Checker
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
branches: ["**"]
|
||||
|
||||
jobs:
|
||||
build_and_test:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Checkout source code
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
persist-credentials: true
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Install dependencies (CMake + Ninja + build tools)
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y cmake ninja-build build-essential time git
|
||||
|
||||
- name: Configure project with CMake
|
||||
run: cmake -G Ninja -S . -B build/
|
||||
|
||||
- name: Build with Ninja
|
||||
run: ninja -C build/
|
||||
|
||||
- name: Run all unit tests except matrix-timing-tests
|
||||
run: |
|
||||
for test_exec in build/unit-tests/matrix-tests build/unit-tests/quaternion-tests build/unit-tests/vector-3d-tests; do
|
||||
if [ -x "$test_exec" ]; then
|
||||
echo "Running $test_exec"
|
||||
"$test_exec"
|
||||
else
|
||||
echo "Warning: $test_exec not found or not executable"
|
||||
fi
|
||||
done
|
||||
- name: Run matrix-timing-tests
|
||||
run: |
|
||||
mkdir -p unit-tests/timing-results
|
||||
if [ -x build/unit-tests/matrix-timing-tests ]; then
|
||||
echo "Running matrix-timing-tests with timing"
|
||||
/usr/bin/time -v build/unit-tests/matrix-timing-tests -d yes &> unit-tests/timing-results/matrix-timing-tests.txt
|
||||
cat unit-tests/timing-results/matrix-timing-tests.txt
|
||||
else
|
||||
echo "matrix-timing-tests executable not found or not executable"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
- name: Compare timing results
|
||||
id: check_diff
|
||||
run: |
|
||||
git show origin/${{ github.event.pull_request.head.ref }}:unit-tests/timing-results/matrix-timing-tests.txt > old.txt || echo "" > old.txt
|
||||
cp unit-tests/timing-results/matrix-timing-tests.txt new.txt
|
||||
|
||||
echo "Comparing timing results for changes ≥ 0.1s (ignoring 'Timing Tests' lines)..."
|
||||
|
||||
changed=0
|
||||
|
||||
awk -v changed_ref=/tmp/timings_changed.flag '
|
||||
BEGIN {
|
||||
change_threshold = 0.1
|
||||
}
|
||||
FILENAME == "old.txt" && /^[0-9]+\.[0-9]+ s: / {
|
||||
label = substr($0, index($0, ":") + 2)
|
||||
if (label != "Timing Tests") {
|
||||
label_times[label] = $1
|
||||
}
|
||||
}
|
||||
FILENAME == "new.txt" && /^[0-9]+\.[0-9]+ s: / {
|
||||
new_time = $1
|
||||
label = substr($0, index($0, ":") + 2)
|
||||
if (label == "Timing Tests") next
|
||||
|
||||
old_time = label_times[label]
|
||||
delta = new_time - old_time
|
||||
if (delta < 0) delta = -delta
|
||||
|
||||
if (old_time != "" && delta >= change_threshold) {
|
||||
printf "⚠️ %.3f s → %.3f s: %s (Δ=%.3f s)\n", old_time, new_time, label, delta
|
||||
system("touch " changed_ref)
|
||||
} else if (old_time == "") {
|
||||
printf "🆕 New timing entry: %.3f s: %s\n", new_time, label
|
||||
system("touch " changed_ref)
|
||||
}
|
||||
}
|
||||
END {
|
||||
if (!system("test -f " changed_ref)) {
|
||||
exit 0
|
||||
} else {
|
||||
print "✅ Timings haven’t changed significantly (Δ < 0.1s)."
|
||||
exit 0
|
||||
}
|
||||
}
|
||||
' old.txt new.txt
|
||||
|
||||
if [ -f /tmp/timings_changed.flag ]; then
|
||||
echo "timings_changed=true" >> $GITHUB_OUTPUT
|
||||
else
|
||||
echo "timings_changed=false" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
2
.gitignore
vendored
2
.gitignore
vendored
@@ -1,2 +1,2 @@
|
||||
build/
|
||||
venv/
|
||||
.cache/
|
||||
17
.vscode/launch.json
vendored
17
.vscode/launch.json
vendored
@@ -27,16 +27,25 @@
|
||||
"internalConsoleOptions": "openOnSessionStart"
|
||||
},
|
||||
{
|
||||
"name": "Run Matrix Unit Tests",
|
||||
"type": "cpp",
|
||||
"name": "Debug Quaternion Unit Tests",
|
||||
"type": "cppdbg",
|
||||
"request": "launch",
|
||||
"program": "${workspaceFolder}/build/unit-tests/matrix-tests",
|
||||
"program": "${workspaceFolder}/build/unit-tests/quaternion-tests",
|
||||
"args": [],
|
||||
"stopAtEntry": false,
|
||||
"cwd": "${workspaceFolder}",
|
||||
"environment": [],
|
||||
"externalConsole": false,
|
||||
"preLaunchTask": "build_tests", // Compile unit tests before running
|
||||
"MIMode": "gdb",
|
||||
"miDebuggerPath": "/usr/bin/gdb", // Adjust to your debugger path
|
||||
"setupCommands": [
|
||||
{
|
||||
"description": "Enable pretty-printing for gdb",
|
||||
"text": "-enable-pretty-printing",
|
||||
"ignoreFailures": true
|
||||
}
|
||||
],
|
||||
"preLaunchTask": "build_tests", // Task to compile unit tests
|
||||
"internalConsoleOptions": "openOnSessionStart"
|
||||
}
|
||||
]
|
||||
|
||||
17
.vscode/settings.json
vendored
17
.vscode/settings.json
vendored
@@ -1,8 +1,5 @@
|
||||
{
|
||||
"C_Cpp.intelliSenseEngine": "default",
|
||||
"clangd.arguments": [
|
||||
"--include-directory=build/unit-tests"
|
||||
],
|
||||
"C_Cpp.default.intelliSenseMode": "linux-gcc-x64",
|
||||
"files.associations": {
|
||||
"*.h": "cpp",
|
||||
@@ -71,8 +68,16 @@
|
||||
"typeinfo": "cpp",
|
||||
"variant": "cpp",
|
||||
"shared_mutex": "cpp",
|
||||
"complex": "cpp"
|
||||
"charconv": "cpp",
|
||||
"format": "cpp",
|
||||
"csignal": "cpp",
|
||||
"span": "cpp"
|
||||
},
|
||||
"clangd.enable": false,
|
||||
"C_Cpp.dimInactiveRegions": false
|
||||
"clangd.enable": true,
|
||||
"C_Cpp.dimInactiveRegions": false,
|
||||
"editor.defaultFormatter": "xaver.clang-format",
|
||||
"clangd.inactiveRegions.useBackgroundHighlight": false,
|
||||
"clangd.arguments": [
|
||||
"--compile-commands-dir=${workspaceFolder}/build"
|
||||
],
|
||||
}
|
||||
6
.vscode/tasks.json
vendored
6
.vscode/tasks.json
vendored
@@ -4,12 +4,14 @@
|
||||
{
|
||||
"label": "build_tests",
|
||||
"type": "shell",
|
||||
"command": "cd build && ninja matrix-tests",
|
||||
"command": "cd build && ninja",
|
||||
"group": {
|
||||
"kind": "build",
|
||||
"isDefault": true
|
||||
},
|
||||
"problemMatcher": ["$gcc"],
|
||||
"problemMatcher": [
|
||||
"$gcc"
|
||||
],
|
||||
"detail": "Generated task to build unit test executable"
|
||||
}
|
||||
]
|
||||
|
||||
@@ -1,40 +1,21 @@
|
||||
cmake_minimum_required(VERSION 3.6)
|
||||
cmake_minimum_required (VERSION 3.11)
|
||||
project(Vector3D)
|
||||
|
||||
add_subdirectory(src)
|
||||
add_subdirectory(unit-tests)
|
||||
|
||||
set(CMAKE_CXX_STANDARD 11)
|
||||
|
||||
add_compile_options(-Wall -Wextra -Wpedantic)
|
||||
add_compile_options (-fdiagnostics-color=always)
|
||||
set(CMAKE_COLOR_DIAGNOSTICS ON)
|
||||
|
||||
# Vector3d
|
||||
add_library(Vector3D
|
||||
STATIC
|
||||
Vector3D.hpp
|
||||
include(FetchContent)
|
||||
|
||||
FetchContent_Declare(
|
||||
Catch2
|
||||
GIT_REPOSITORY https://github.com/catchorg/Catch2.git
|
||||
GIT_TAG v3.8.0 # or a later release
|
||||
)
|
||||
|
||||
set_target_properties(Vector3D
|
||||
PROPERTIES
|
||||
LINKER_LANGUAGE CXX
|
||||
)
|
||||
|
||||
target_include_directories(Vector3D PUBLIC
|
||||
include
|
||||
)
|
||||
|
||||
# Matrix
|
||||
add_library(Matrix
|
||||
STATIC
|
||||
Matrix.hpp
|
||||
Matrix.cpp
|
||||
)
|
||||
|
||||
set_target_properties(Matrix
|
||||
PROPERTIES
|
||||
LINKER_LANGUAGE CXX
|
||||
)
|
||||
|
||||
target_include_directories(Matrix
|
||||
PUBLIC
|
||||
.
|
||||
)
|
||||
FetchContent_MakeAvailable(Catch2)
|
||||
13
README.md
13
README.md
@@ -1 +1,12 @@
|
||||
A Simple matrix math library focused on embedded development which avoids and heap memory allocation unless you explicitly ask for it.
|
||||
# Introduction
|
||||
This matrix math library is focused on embedded development and avoids any heap memory allocation unless you explicitly ask for it.
|
||||
It uses templates to pre-allocate matrices on the stack.
|
||||
|
||||
# Building
|
||||
1. Initialize the repositiory with the command:
|
||||
```bash
|
||||
cmake -S . -B build -G Ninja
|
||||
```
|
||||
|
||||
2. Go into the build folder and run `ninja`
|
||||
3. That's it. You can test out the build by running `./unit-tests/matrix-tests`
|
||||
81
Vector3D.hpp
81
Vector3D.hpp
@@ -1,81 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <cmath>
|
||||
#include <type_traits>
|
||||
|
||||
template <typename Type>
|
||||
class V3D{
|
||||
public:
|
||||
constexpr V3D(const V3D& other):
|
||||
x(other.x),
|
||||
y(other.y),
|
||||
z(other.z){
|
||||
static_assert(std::is_arithmetic<Type>::value, "Type must be a number");
|
||||
}
|
||||
|
||||
constexpr V3D(Type x=0, Type y=0, Type z=0):
|
||||
x(x),
|
||||
y(y),
|
||||
z(z){
|
||||
static_assert(std::is_arithmetic<Type>::value, "Type must be a number");
|
||||
}
|
||||
|
||||
template <typename OtherType>
|
||||
constexpr V3D(const V3D<OtherType> other):
|
||||
x(static_cast<Type>(other.x)),
|
||||
y(static_cast<Type>(other.y)),
|
||||
z(static_cast<Type>(other.z)){
|
||||
static_assert(std::is_arithmetic<Type>::value, "Type must be a number");
|
||||
static_assert(std::is_arithmetic<OtherType>::value, "OtherType must be a number");
|
||||
}
|
||||
|
||||
V3D& operator=(const V3D &other){
|
||||
this->x = other.x;
|
||||
this->y = other.y;
|
||||
this->z = other.z;
|
||||
return *this;
|
||||
}
|
||||
|
||||
V3D& operator+=(const V3D &other){
|
||||
this->x += other.x;
|
||||
this->y += other.y;
|
||||
this->z += other.z;
|
||||
return *this;
|
||||
}
|
||||
|
||||
V3D& operator-=(const V3D &other){
|
||||
this->x -= other.x;
|
||||
this->y -= other.y;
|
||||
this->z -= other.z;
|
||||
return *this;
|
||||
}
|
||||
|
||||
V3D& operator/=(const Type scalar){
|
||||
if(scalar == 0){
|
||||
return *this;
|
||||
}
|
||||
this->x /= scalar;
|
||||
this->y /= scalar;
|
||||
this->z /= scalar;
|
||||
return *this;
|
||||
}
|
||||
|
||||
V3D& operator*=(const Type scalar){
|
||||
this->x *= scalar;
|
||||
this->y *= scalar;
|
||||
this->z *= scalar;
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool operator==(const V3D &other){
|
||||
return this->x == other.x && this->y == other.y && this->z == other.z;
|
||||
}
|
||||
|
||||
float magnitude(){
|
||||
return std::sqrt(static_cast<float>(this->x * this->x + this->y * this->y + this->z * this->z));
|
||||
}
|
||||
Type x;
|
||||
Type y;
|
||||
Type z;
|
||||
};
|
||||
20
library.json
Normal file
20
library.json
Normal file
@@ -0,0 +1,20 @@
|
||||
{
|
||||
"name": "Vector3D",
|
||||
"version": "1.0.0",
|
||||
"description": "Contains a V3D object for easy 3d vector math and a Matrix object for more complicated linear algebra operations.",
|
||||
"keywords": "linear algebra, vector, matrix, 3D",
|
||||
"repository": {
|
||||
"type": "git",
|
||||
"url": "https://github.com/Cynopolis/Vector3D.git"
|
||||
},
|
||||
"authors": [
|
||||
{
|
||||
"name": "Cynopolis",
|
||||
"email": "megaveganzombie@gmail.com",
|
||||
"url": "https://github.com/Cynopolis"
|
||||
}
|
||||
],
|
||||
"license": "None Yet",
|
||||
"frameworks": "*",
|
||||
"platforms": "*"
|
||||
}
|
||||
159
qr-decom.py
159
qr-decom.py
@@ -1,159 +0,0 @@
|
||||
import numpy as np
|
||||
|
||||
# QR decomposition using the householder reflection method
|
||||
def householder_reflection(A):
|
||||
"""
|
||||
Perform QR decomposition using Householder reflection.
|
||||
|
||||
Arguments:
|
||||
A -- A matrix to be decomposed (m x n).
|
||||
|
||||
Returns:
|
||||
Q -- Orthogonal matrix (m x m).
|
||||
R -- Upper triangular matrix (m x n).
|
||||
"""
|
||||
A = A.astype(float) # Ensure the matrix is of type float
|
||||
m, n = A.shape
|
||||
Q = np.eye(m) # Initialize Q as an identity matrix
|
||||
R = A.copy() # R starts as a copy of A
|
||||
|
||||
# Apply Householder reflections for each column
|
||||
for k in range(n):
|
||||
# Step 1: Compute the Householder vector
|
||||
x = R[k:m, k]
|
||||
e1 = np.zeros_like(x)
|
||||
e1[0] = np.linalg.norm(x) if x[0] >= 0 else -np.linalg.norm(x)
|
||||
v = x + e1
|
||||
v = v / np.linalg.norm(v) # Normalize v
|
||||
|
||||
# Step 2: Apply the reflection to the matrix
|
||||
R[k:m, k:n] = R[k:m, k:n] - 2 * np.outer(v, v.T @ R[k:m, k:n])
|
||||
|
||||
# Step 3: Apply the reflection to Q
|
||||
Q[:, k:m] = Q[:, k:m] - 2 * np.outer(Q[:, k:m] @ v, v)
|
||||
|
||||
# The resulting Q and R are the QR decomposition
|
||||
return Q, R
|
||||
|
||||
# Example usage
|
||||
A = np.array([[12, -51, 4],
|
||||
[6, 167, -68],
|
||||
[-4, 24, -41]])
|
||||
|
||||
Q, R = householder_reflection(A)
|
||||
print("Q matrix:")
|
||||
print(Q)
|
||||
print("\nR matrix:")
|
||||
print(R)
|
||||
print("Multiplied Together:")
|
||||
print(Q@R)
|
||||
|
||||
def svd_decomposition(A):
|
||||
"""
|
||||
Perform Singular Value Decomposition (SVD) from scratch.
|
||||
|
||||
Arguments:
|
||||
A -- The matrix to be decomposed (m x n).
|
||||
|
||||
Returns:
|
||||
U -- Orthogonal matrix of left singular vectors (m x m).
|
||||
Sigma -- Diagonal matrix of singular values (m x n).
|
||||
Vt -- Orthogonal matrix of right singular vectors (n x n).
|
||||
"""
|
||||
# Step 1: Compute A^T A
|
||||
AtA = np.dot(A.T, A) # A transpose multiplied by A
|
||||
|
||||
# Step 2: Compute the eigenvalues and eigenvectors of A^T A
|
||||
eigenvalues, V = np.linalg.eig(AtA)
|
||||
|
||||
# Step 3: Sort eigenvalues in descending order and sort V accordingly
|
||||
sorted_indices = np.argsort(eigenvalues)[::-1] # Indices to sort eigenvalues in descending order
|
||||
eigenvalues = eigenvalues[sorted_indices]
|
||||
V = V[:, sorted_indices]
|
||||
|
||||
# Step 4: Compute the singular values (sqrt of eigenvalues)
|
||||
singular_values = np.sqrt(eigenvalues)
|
||||
|
||||
# Step 5: Construct the Sigma matrix
|
||||
m, n = A.shape
|
||||
Sigma = np.zeros((m, n)) # Initialize Sigma as a zero matrix
|
||||
for i in range(min(m, n)):
|
||||
Sigma[i, i] = singular_values[i] # Place the singular values on the diagonal
|
||||
|
||||
# Step 6: Compute the U matrix using A * V = U * Sigma
|
||||
U = np.dot(A, V) # A * V gives us the unnormalized U
|
||||
# Normalize the columns of U
|
||||
for i in range(U.shape[1]):
|
||||
U[:, i] = U[:, i] / singular_values[i] # Normalize each column by the corresponding singular value
|
||||
|
||||
# Step 7: Return U, Sigma, Vt
|
||||
return U, Sigma, V.T # V.T is the transpose of V
|
||||
|
||||
# Example usage
|
||||
A = np.array([[12, -51, 4],
|
||||
[6, 167, -68],
|
||||
[-4, 24, -41]])
|
||||
|
||||
U, Sigma, Vt = svd_decomposition(A)
|
||||
|
||||
print("\nSVD DECOMPOSITION\nU matrix:")
|
||||
print(U)
|
||||
print("\nSigma matrix:")
|
||||
print(Sigma)
|
||||
print("\nVt matrix:")
|
||||
print(Vt)
|
||||
print("Multiplied together:")
|
||||
print(U@Sigma@Vt)
|
||||
|
||||
def eigen_decomposition_qr(A, max_iter=1000, tol=1e-9):
|
||||
"""
|
||||
Compute the eigenvalues and eigenvectors of a matrix A using the QR algorithm
|
||||
with QR decomposition.
|
||||
|
||||
Arguments:
|
||||
A -- A square matrix (n x n).
|
||||
max_iter -- Maximum number of iterations for convergence (default 1000).
|
||||
tol -- Tolerance for convergence (default 1e-9).
|
||||
|
||||
Returns:
|
||||
eigenvalues -- List of eigenvalues.
|
||||
eigenvectors -- Matrix of eigenvectors.
|
||||
"""
|
||||
# Make a copy of A to perform the iteration
|
||||
A_copy = A.copy()
|
||||
n = A_copy.shape[0]
|
||||
|
||||
# Initialize the matrix for eigenvectors (this will accumulate the Q matrices)
|
||||
eigenvectors = np.eye(n)
|
||||
|
||||
# Perform QR iterations
|
||||
for _ in range(max_iter):
|
||||
# Perform QR decomposition on A_copy
|
||||
Q, R = householder_reflection(A_copy)
|
||||
|
||||
# Update A_copy to be R * Q (QR algorithm step)
|
||||
A_copy = R @ Q
|
||||
|
||||
# Accumulate the eigenvectors
|
||||
eigenvectors = eigenvectors @ Q
|
||||
|
||||
# Check for convergence: if the off-diagonal elements are small enough, we stop
|
||||
off_diagonal_norm = np.linalg.norm(np.tril(A_copy, -1)) # Norm of the lower triangle (off-diagonal)
|
||||
if off_diagonal_norm < tol:
|
||||
break
|
||||
|
||||
# The eigenvalues are the diagonal elements of the matrix A_copy
|
||||
eigenvalues = np.diag(A_copy)
|
||||
|
||||
return eigenvalues, eigenvectors
|
||||
|
||||
# Example usage
|
||||
A = np.array([[12, -51, 4],
|
||||
[6, 167, -68],
|
||||
[-4, 24, -41]])
|
||||
|
||||
eigenvalues, eigenvectors = eigen_decomposition_qr(A)
|
||||
|
||||
|
||||
print("\n\nEigenvalues:", eigenvalues)
|
||||
print("Eigenvectors:\n", eigenvectors)
|
||||
59
src/CMakeLists.txt
Normal file
59
src/CMakeLists.txt
Normal file
@@ -0,0 +1,59 @@
|
||||
# Quaternion Interface
|
||||
add_library(vector-3d-intf
|
||||
INTERFACE
|
||||
)
|
||||
|
||||
target_include_directories(vector-3d-intf
|
||||
INTERFACE
|
||||
.
|
||||
)
|
||||
|
||||
target_link_libraries(vector-3d-intf
|
||||
INTERFACE
|
||||
)
|
||||
|
||||
# Quaternion
|
||||
add_library(quaternion
|
||||
STATIC
|
||||
Quaternion.cpp
|
||||
)
|
||||
|
||||
target_link_libraries(quaternion
|
||||
PUBLIC
|
||||
vector-3d-intf
|
||||
PRIVATE
|
||||
)
|
||||
|
||||
set_target_properties(quaternion
|
||||
PROPERTIES
|
||||
LINKER_LANGUAGE CXX
|
||||
)
|
||||
|
||||
# Vector3d
|
||||
add_library(vector-3d
|
||||
STATIC
|
||||
Vector3D.cpp
|
||||
)
|
||||
|
||||
target_link_libraries(vector-3d
|
||||
PUBLIC
|
||||
vector-3d-intf
|
||||
PRIVATE
|
||||
)
|
||||
|
||||
# Matrix
|
||||
add_library(matrix
|
||||
STATIC
|
||||
Matrix.cpp
|
||||
)
|
||||
|
||||
target_link_libraries(matrix
|
||||
PUBLIC
|
||||
vector-3d-intf
|
||||
PRIVATE
|
||||
)
|
||||
|
||||
set_target_properties(matrix
|
||||
PROPERTIES
|
||||
LINKER_LANGUAGE CXX
|
||||
)
|
||||
@@ -1,3 +1,10 @@
|
||||
// This #ifndef section makes clangd happy so that it can properly do type hints
|
||||
// in this file
|
||||
#ifndef MATRIX_H_
|
||||
#define MATRIX_H_
|
||||
#include "Matrix.hpp"
|
||||
#endif
|
||||
|
||||
#ifdef MATRIX_H_ // since the .cpp file has to be included by the .hpp file this
|
||||
// will evaluate to true
|
||||
#include "Matrix.hpp"
|
||||
@@ -5,18 +12,44 @@
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstdlib>
|
||||
#include <type_traits>
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns>::Matrix(float value) {
|
||||
this->Fill(value);
|
||||
}
|
||||
#include <cstring>
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns>::Matrix(const std::array<float, rows * columns> &array) {
|
||||
this->setMatrixToArray(array);
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
template <typename... Args>
|
||||
Matrix<rows, columns>::Matrix(Args... args) {
|
||||
constexpr uint16_t arraySize{static_cast<uint16_t>(rows) *
|
||||
static_cast<uint16_t>(columns)};
|
||||
|
||||
std::initializer_list<float> initList{static_cast<float>(args)...};
|
||||
// if there is only one value, we actually want to do a fill
|
||||
if (sizeof...(args) == 1) {
|
||||
this->Fill(*initList.begin());
|
||||
}
|
||||
static_assert(sizeof...(args) == arraySize || sizeof...(args) == 1,
|
||||
"You did not provide the right amount of initializers for this "
|
||||
"matrix size");
|
||||
|
||||
// choose whichever buffer size is smaller for the copy length
|
||||
uint32_t minSize =
|
||||
std::min(arraySize, static_cast<uint16_t>(initList.size()));
|
||||
memcpy(this->matrix.begin(), initList.begin(), minSize * sizeof(float));
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns> Matrix<rows, columns>::Identity() {
|
||||
Matrix<rows, columns> identityMatrix{0};
|
||||
uint32_t minDimension = std::min(rows, columns);
|
||||
for (uint8_t idx{0}; idx < minDimension; idx++) {
|
||||
identityMatrix[idx][idx] = 1;
|
||||
}
|
||||
return identityMatrix;
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns>::Matrix(const Matrix<rows, columns> &other) {
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
||||
@@ -27,19 +60,6 @@ Matrix<rows, columns>::Matrix(const Matrix<rows, columns> &other) {
|
||||
}
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
template <typename... Args>
|
||||
Matrix<rows, columns>::Matrix(Args... args) {
|
||||
constexpr uint16_t arraySize{static_cast<uint16_t>(rows) *
|
||||
static_cast<uint16_t>(columns)};
|
||||
|
||||
std::initializer_list<float> initList{static_cast<float>(args)...};
|
||||
// choose whichever buffer size is smaller for the copy length
|
||||
uint32_t minSize =
|
||||
std::min(arraySize, static_cast<uint16_t>(initList.size()));
|
||||
memcpy(this->matrix.begin(), initList.begin(), minSize * sizeof(float));
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
void Matrix<rows, columns>::setMatrixToArray(
|
||||
const std::array<float, rows * columns> &array) {
|
||||
@@ -91,21 +111,18 @@ Matrix<rows, columns>::Mult(const Matrix<columns, other_columns> &other,
|
||||
Matrix<rows, other_columns> &result) const {
|
||||
// allocate some buffers for all of our dot products
|
||||
Matrix<1, columns> this_row;
|
||||
Matrix<rows, 1> other_column;
|
||||
Matrix<1, rows> other_column_t;
|
||||
Matrix<columns, 1> other_column;
|
||||
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
||||
// get our row
|
||||
this->GetRow(row_idx, this_row);
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
||||
for (uint8_t column_idx{0}; column_idx < other_columns; column_idx++) {
|
||||
// get the other matrix'ss column
|
||||
other.GetColumn(column_idx, other_column);
|
||||
// transpose the other matrix's column
|
||||
other_column.Transpose(other_column_t);
|
||||
|
||||
// the result's index is equal to the dot product of these two vectors
|
||||
result[row_idx][column_idx] =
|
||||
Matrix<rows, columns>::dotProduct(this_row, other_column_t);
|
||||
Matrix<rows, columns>::DotProduct(this_row, other_column.Transpose());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -125,13 +142,13 @@ Matrix<rows, columns>::Mult(float scalar, Matrix<rows, columns> &result) const {
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns> &
|
||||
Matrix<rows, columns>::Invert(Matrix<rows, columns> &result) const {
|
||||
Matrix<rows, columns> Matrix<rows, columns>::Invert() const {
|
||||
// since all matrix sizes have to be statically specified at compile time we
|
||||
// can do this
|
||||
static_assert(rows == columns,
|
||||
"Your matrix isn't square and can't be inverted");
|
||||
|
||||
Matrix<rows, columns> result{};
|
||||
// unfortunately we can't calculate this at compile time so we'll just reurn
|
||||
// zeros
|
||||
float determinant{this->Det()};
|
||||
@@ -160,8 +177,8 @@ Matrix<rows, columns>::Invert(Matrix<rows, columns> &result) const {
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<columns, rows> &
|
||||
Matrix<rows, columns>::Transpose(Matrix<columns, rows> &result) const {
|
||||
Matrix<columns, rows> Matrix<rows, columns>::Transpose() const {
|
||||
Matrix<columns, rows> result{};
|
||||
for (uint8_t column_idx{0}; column_idx < rows; column_idx++) {
|
||||
for (uint8_t row_idx{0}; row_idx < columns; row_idx++) {
|
||||
result[row_idx][column_idx] = this->Get(column_idx, row_idx);
|
||||
@@ -173,9 +190,10 @@ Matrix<rows, columns>::Transpose(Matrix<columns, rows> &result) const {
|
||||
|
||||
// explicitly define the determinant for a 2x2 matrix because it is definitely
|
||||
// the fastest way to calculate a 2x2 matrix determinant
|
||||
template <> float Matrix<0, 0>::Det() const { return 1e+6; }
|
||||
template <> float Matrix<1, 1>::Det() const { return this->matrix[0]; }
|
||||
template <> float Matrix<2, 2>::Det() const {
|
||||
// template <>
|
||||
// inline float Matrix<0, 0>::Det() const { return 1e+6; }
|
||||
template <> inline float Matrix<1, 1>::Det() const { return this->matrix[0]; }
|
||||
template <> inline float Matrix<2, 2>::Det() const {
|
||||
return this->matrix[0] * this->matrix[3] - this->matrix[1] * this->matrix[2];
|
||||
}
|
||||
|
||||
@@ -271,8 +289,13 @@ void Matrix<rows, columns>::ToString(std::string &stringBuffer) const {
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
std::array<float, columns> &Matrix<rows, columns>::
|
||||
operator[](uint8_t row_index) {
|
||||
const float *Matrix<rows, columns>::ToArray() const {
|
||||
return this->matrix.data();
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
std::array<float, columns> &
|
||||
Matrix<rows, columns>::operator[](uint8_t row_index) {
|
||||
if (row_index > rows - 1) {
|
||||
// TODO: We should throw something here instead of failing quietly.
|
||||
row_index = 0;
|
||||
@@ -284,38 +307,36 @@ operator[](uint8_t row_index) {
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns> &Matrix<rows, columns>::
|
||||
operator=(const Matrix<rows, columns> &other) {
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
||||
this->matrix[row_idx * columns + column_idx] =
|
||||
other.Get(row_idx, column_idx);
|
||||
}
|
||||
}
|
||||
Matrix<rows, columns> &
|
||||
Matrix<rows, columns>::operator=(const Matrix<rows, columns> &other) {
|
||||
memcpy(this->matrix.begin(), other.matrix.begin(),
|
||||
rows * columns * sizeof(float));
|
||||
|
||||
// return a reference to ourselves so you can chain together these functions
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns> Matrix<rows, columns>::
|
||||
operator+(const Matrix<rows, columns> &other) const {
|
||||
Matrix<rows, columns>
|
||||
Matrix<rows, columns>::operator+(const Matrix<rows, columns> &other) const {
|
||||
Matrix<rows, columns> buffer{};
|
||||
this->Add(other, buffer);
|
||||
return buffer;
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns> Matrix<rows, columns>::
|
||||
operator-(const Matrix<rows, columns> &other) const {
|
||||
Matrix<rows, columns>
|
||||
Matrix<rows, columns>::operator-(const Matrix<rows, columns> &other) const {
|
||||
Matrix<rows, columns> buffer{};
|
||||
this->Sub(other, buffer);
|
||||
return buffer;
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns> Matrix<rows, columns>::
|
||||
operator*(const Matrix<rows, columns> &other) const {
|
||||
Matrix<rows, columns> buffer{};
|
||||
template <uint8_t other_columns>
|
||||
Matrix<rows, other_columns> Matrix<rows, columns>::operator*(
|
||||
const Matrix<columns, other_columns> &other) const {
|
||||
Matrix<rows, other_columns> buffer{};
|
||||
this->Mult(other, buffer);
|
||||
return buffer;
|
||||
}
|
||||
@@ -327,9 +348,25 @@ Matrix<rows, columns> Matrix<rows, columns>::operator*(float scalar) const {
|
||||
return buffer;
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns> Matrix<rows, columns>::operator/(float scalar) const {
|
||||
Matrix<rows, columns> buffer = *this;
|
||||
if (scalar == 0) {
|
||||
buffer.Fill(1e+10);
|
||||
return buffer;
|
||||
}
|
||||
|
||||
for (uint8_t row = 0; row < rows; row++) {
|
||||
for (uint8_t column = 0; column < columns; column++) {
|
||||
buffer[row][column] /= scalar;
|
||||
}
|
||||
}
|
||||
return buffer;
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
template <uint8_t vector_size>
|
||||
float Matrix<rows, columns>::dotProduct(const Matrix<1, vector_size> &vec1,
|
||||
float Matrix<rows, columns>::DotProduct(const Matrix<1, vector_size> &vec1,
|
||||
const Matrix<1, vector_size> &vec2) {
|
||||
float sum{0};
|
||||
for (uint8_t i{0}; i < vector_size; i++) {
|
||||
@@ -341,7 +378,7 @@ float Matrix<rows, columns>::dotProduct(const Matrix<1, vector_size> &vec1,
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
template <uint8_t vector_size>
|
||||
float Matrix<rows, columns>::dotProduct(const Matrix<vector_size, 1> &vec1,
|
||||
float Matrix<rows, columns>::DotProduct(const Matrix<vector_size, 1> &vec1,
|
||||
const Matrix<vector_size, 1> &vec2) {
|
||||
float sum{0};
|
||||
for (uint8_t i{0}; i < vector_size; i++) {
|
||||
@@ -353,7 +390,11 @@ float Matrix<rows, columns>::dotProduct(const Matrix<vector_size, 1> &vec1,
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
void Matrix<rows, columns>::Fill(float value) {
|
||||
this->matrix.fill(value);
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
||||
this->matrix[row_idx * columns + column_idx] = value;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
@@ -409,8 +450,8 @@ Matrix<rows, columns>::adjugate(Matrix<rows, columns> &result) const {
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns> &
|
||||
Matrix<rows, columns>::Normalize(Matrix<rows, columns> &result) const {
|
||||
float Matrix<rows, columns>::EuclideanNorm() const {
|
||||
|
||||
float sum{0};
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
||||
@@ -419,90 +460,147 @@ Matrix<rows, columns>::Normalize(Matrix<rows, columns> &result) const {
|
||||
}
|
||||
}
|
||||
|
||||
if (sum == 0) {
|
||||
// this wouldn't do anything anyways
|
||||
result.Fill(1e+6);
|
||||
return result;
|
||||
}
|
||||
|
||||
sum = sqrt(sum);
|
||||
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
||||
result[row_idx][column_idx] = this->Get(row_idx, column_idx) / sum;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
return sqrt(sum);
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, rows> Matrix<rows, columns>::Eye() {
|
||||
Matrix<rows, rows> i_matrix;
|
||||
i_matrix.Fill(0);
|
||||
for (uint8_t i{0}; i < rows; i++) {
|
||||
i_matrix[i][i] = 1;
|
||||
template <uint8_t sub_rows, uint8_t sub_columns, uint8_t row_offset,
|
||||
uint8_t column_offset>
|
||||
Matrix<sub_rows, sub_columns> Matrix<rows, columns>::SubMatrix() const {
|
||||
// static assert that sub_rows + row_offset <= rows
|
||||
// static assert that sub_columns + column_offset <= columns
|
||||
static_assert(sub_rows + row_offset <= rows,
|
||||
"The submatrix you're trying to get is out of bounds (rows)");
|
||||
static_assert(
|
||||
sub_columns + column_offset <= columns,
|
||||
"The submatrix you're trying to get is out of bounds (columns)");
|
||||
|
||||
Matrix<sub_rows, sub_columns> buffer{};
|
||||
for (uint8_t row_idx{0}; row_idx < sub_rows; row_idx++) {
|
||||
for (uint8_t column_idx{0}; column_idx < sub_columns; column_idx++) {
|
||||
buffer[row_idx][column_idx] =
|
||||
this->Get(row_idx + row_offset, column_idx + column_offset);
|
||||
}
|
||||
return i_matrix;
|
||||
}
|
||||
return buffer;
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
void Matrix<rows, columns>::QR_Decomposition(Matrix<rows, columns> &Q,
|
||||
Matrix<rows, columns> &R) const {
|
||||
Q = Matrix<rows, columns>::Eye(); // Q starts as the identity matrix
|
||||
R = *this; // R starts as a copy of this matrix (For this algorithm we'll call
|
||||
// this matrix A)
|
||||
template <uint8_t sub_rows, uint8_t sub_columns>
|
||||
void Matrix<rows, columns>::SetSubMatrix(
|
||||
uint8_t rowOffset, uint8_t columnOffset,
|
||||
const Matrix<sub_rows, sub_columns> &sub_matrix) {
|
||||
int16_t adjustedSubRows = sub_rows;
|
||||
int16_t adjustedSubColumns = sub_columns;
|
||||
int16_t adjustedRowOffset = rowOffset;
|
||||
int16_t adjustedColumnOffset = columnOffset;
|
||||
|
||||
for (uint8_t row{0}; row < rows; row++) {
|
||||
// compute the householder vector
|
||||
const uint8_t houseHoldVectorSize{rows - row};
|
||||
const uint8_t subMatrixSize{columns - row};
|
||||
Matrix<houseHoldVectorSize, 1> x{};
|
||||
this->SubMatrix(row, row, x);
|
||||
// a bunch of safety checks to make sure we don't overflow the matrix
|
||||
if (sub_rows > rows) {
|
||||
adjustedSubRows = rows;
|
||||
}
|
||||
if (sub_columns > columns) {
|
||||
adjustedSubColumns = columns;
|
||||
}
|
||||
|
||||
Matrix<houseHoldVectorSize, 1> e1{};
|
||||
e1.Fill(0);
|
||||
if (x[0][0] >= 0) {
|
||||
e1[0][0] = x.Norm();
|
||||
if (adjustedSubRows + adjustedRowOffset >= rows) {
|
||||
adjustedRowOffset =
|
||||
std::max(0, static_cast<int16_t>(rows) - adjustedSubRows);
|
||||
}
|
||||
|
||||
if (adjustedSubColumns + adjustedColumnOffset >= columns) {
|
||||
adjustedColumnOffset =
|
||||
std::max(0, static_cast<int16_t>(columns) - adjustedSubColumns);
|
||||
}
|
||||
|
||||
for (uint8_t row_idx{0}; row_idx < adjustedSubRows; row_idx++) {
|
||||
for (uint8_t column_idx{0}; column_idx < adjustedSubColumns; column_idx++) {
|
||||
this->matrix[(row_idx + adjustedRowOffset) * columns + column_idx +
|
||||
adjustedColumnOffset] = sub_matrix.Get(row_idx, column_idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// QR decomposition: decomposes this matrix A into Q and R
|
||||
// Assumes square matrix
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
void Matrix<rows, columns>::QRDecomposition(Matrix<rows, columns> &Q,
|
||||
Matrix<columns, columns> &R) const {
|
||||
static_assert(columns <= rows, "QR decomposition requires columns <= rows");
|
||||
|
||||
Q.Fill(0);
|
||||
R.Fill(0);
|
||||
Matrix<rows, 1> a_col, e, u, Q_column_k{};
|
||||
Matrix<1, rows> a_T, e_T{};
|
||||
|
||||
for (uint8_t column = 0; column < columns; column++) {
|
||||
this->GetColumn(column, a_col);
|
||||
u = a_col;
|
||||
// -----------------------
|
||||
// ----- CALCULATE Q -----
|
||||
// -----------------------
|
||||
for (uint8_t k = 0; k <= column; k++) {
|
||||
Q.GetColumn(k, Q_column_k);
|
||||
Matrix<1, rows> Q_column_k_T = Q_column_k.Transpose();
|
||||
u = u - Q_column_k * (Q_column_k_T * a_col);
|
||||
}
|
||||
float norm = u.EuclideanNorm();
|
||||
if (norm > 1e-4) {
|
||||
u = u / norm;
|
||||
} else {
|
||||
e1[0][0] = -x.Norm();
|
||||
u.Fill(0);
|
||||
}
|
||||
Q.SetSubMatrix(0, column, u);
|
||||
|
||||
// -----------------------
|
||||
// ----- CALCULATE R -----
|
||||
// -----------------------
|
||||
for (uint8_t k = 0; k <= column; k++) {
|
||||
Q.GetColumn(k, e);
|
||||
R[k][column] = (a_col.Transpose() * e).Get(0, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Matrix<houseHoldVectorSize, 1> v = x + e1;
|
||||
v = v * (1 / v.Norm()); // normalize V
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
void Matrix<rows, columns>::EigenQR(Matrix<rows, rows> &eigenVectors,
|
||||
Matrix<rows, 1> &eigenValues,
|
||||
uint32_t maxIterations,
|
||||
float tolerance) const {
|
||||
static_assert(rows > 1, "Matrix size must be > 1 for QR iteration");
|
||||
static_assert(rows == columns, "Matrix size must be square for QR iteration");
|
||||
|
||||
// ************************************
|
||||
// Apply the reflection to the R matrix
|
||||
// ************************************
|
||||
// initialize R's submatrix
|
||||
Matrix<houseHoldVectorSize, subMatrixSize> R_subMatrix{};
|
||||
R.SubMatrix(row, row, R_subMatrix);
|
||||
// create some temporary buffers
|
||||
Matrix<1, subMatrixSize> vR{};
|
||||
Matrix<1, houseHoldVectorSize> v_T{};
|
||||
v.Transpose(v_T);
|
||||
Matrix<houseHoldVectorSize, subMatrixSize> vR_outer{};
|
||||
// calculate the reflection
|
||||
R_subMatrix =
|
||||
R_subMatrix - 2 * Matrix<rows, columns>::OuterProduct(
|
||||
v_T, v_T.Mult(R_subMatrix, vR), vR_outer);
|
||||
// save the reflection back to R
|
||||
R.CopySubMatrixInto(row, row, R_subMatrix);
|
||||
Matrix<rows, rows> Ak = *this; // Copy original matrix
|
||||
Matrix<rows, rows> QQ{Matrix<rows, rows>::Identity()};
|
||||
Matrix<rows, rows> shift{0};
|
||||
|
||||
// ************************************
|
||||
// Apply the reflection to the Q matrix
|
||||
// ************************************
|
||||
// initialize Q's submatrix
|
||||
Matrix<rows, houseHoldVectorSize> Q_subMatrix{};
|
||||
Q.SubMatrix(0, row, Q_subMatrix);
|
||||
// create some temporary buffers
|
||||
Matrix<rows, 1> Qv{};
|
||||
Matrix<rows, houseHoldVectorSize> Qv_outer{};
|
||||
for (uint32_t iter = 0; iter < maxIterations; ++iter) {
|
||||
Matrix<rows, rows> Q, R;
|
||||
|
||||
Q_subMatrix = Q_subMatrix - 2 * Matrix<rows, columns>::OuterProduct(
|
||||
Q_subMatrix.Mult(v, Qv), v, Qv_outer);
|
||||
Q.CopySubMatrixInto(0, row, Q_subMatrix);
|
||||
// // QR shift lets us "attack" the first diagonal to speed up the algorithm
|
||||
// shift = Matrix<rows, rows>::Identity() * Ak[rows - 1][rows - 1];
|
||||
(Ak - shift).QRDecomposition(Q, R);
|
||||
Ak = R * Q + shift;
|
||||
QQ = QQ * Q;
|
||||
|
||||
// Check convergence: off-diagonal norm
|
||||
float offDiagSum = 0.0f;
|
||||
for (uint32_t row = 1; row < rows; row++) {
|
||||
for (uint32_t column = 0; column < row; column++) {
|
||||
offDiagSum += fabs(Ak[row][column]);
|
||||
}
|
||||
}
|
||||
|
||||
if (offDiagSum < tolerance) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Diagonal elements are the eigenvalues
|
||||
for (uint8_t i = 0; i < rows; i++) {
|
||||
eigenValues[i][0] = Ak[i][i];
|
||||
}
|
||||
eigenVectors = QQ;
|
||||
}
|
||||
|
||||
#endif // MATRIX_H_
|
||||
@@ -1,8 +1,8 @@
|
||||
#ifndef MATRIX_H_
|
||||
#define MATRIX_H_
|
||||
#pragma once
|
||||
|
||||
#include <array>
|
||||
#include <cstdint>
|
||||
#include <string>
|
||||
|
||||
// TODO: Add a function to calculate eigenvalues/vectors
|
||||
// TODO: Add a function to compute RREF
|
||||
@@ -11,16 +11,13 @@
|
||||
|
||||
template <uint8_t rows, uint8_t columns> class Matrix {
|
||||
public:
|
||||
static_assert(rows > 0, "Template error: rows must be greater than 0.");
|
||||
static_assert(columns > 0, "Template error: columns must be greater than 0.");
|
||||
/**
|
||||
* @brief create a matrix but leave all of its values unitialized
|
||||
*/
|
||||
Matrix() = default;
|
||||
|
||||
/**
|
||||
* @brief Create a matrix but fill all of its entries with one value
|
||||
*/
|
||||
Matrix(float value);
|
||||
|
||||
/**
|
||||
* @brief Initialize a matrix with an array
|
||||
*/
|
||||
@@ -36,6 +33,11 @@ public:
|
||||
*/
|
||||
template <typename... Args> Matrix(Args... args);
|
||||
|
||||
/**
|
||||
* @brief Create an identity matrix
|
||||
*/
|
||||
static Matrix<rows, columns> Identity();
|
||||
|
||||
/**
|
||||
* @brief Set all elements in this to value
|
||||
*/
|
||||
@@ -112,79 +114,20 @@ public:
|
||||
* @param result A buffer to store the result into
|
||||
* @warning this is super slow! Only call it if you absolutely have to!!!
|
||||
*/
|
||||
Matrix<rows, columns> &Invert(Matrix<rows, columns> &result) const;
|
||||
Matrix<rows, columns> Invert() const;
|
||||
|
||||
/**
|
||||
* @brief Transpose this matrix
|
||||
* @param result A buffer to store the result into
|
||||
*/
|
||||
Matrix<columns, rows> &Transpose(Matrix<columns, rows> &result) const;
|
||||
Matrix<columns, rows> Transpose() const;
|
||||
|
||||
/**
|
||||
* @brief reduce the matrix so the sum of its elements equal 1
|
||||
* @brief Returns the euclidean magnitude of the matrix. Also known as the L2
|
||||
* norm
|
||||
* @param result a buffer to store the result into
|
||||
*/
|
||||
Matrix<rows, columns> &Normalize(Matrix<rows, columns> &result) const;
|
||||
|
||||
/**
|
||||
* @brief return an identity matrix of the specified size
|
||||
*/
|
||||
static Matrix<rows, rows> Eye();
|
||||
|
||||
/**
|
||||
* @brief write a copy of a sub matrix into the given result matrix.
|
||||
* @param rowIndex The row index to start the copy from
|
||||
* @param columnIndex the column index to start the copy from
|
||||
* @param result the matrix buffer to write the sub matrix into. The size of
|
||||
* the matrix buffer allows the function to determine the end indices of the
|
||||
* sub matrix
|
||||
*/
|
||||
template <uint8_t subRows, uint8_t subColumns>
|
||||
Matrix<subRows, subColumns> &
|
||||
SubMatrix(uint8_t rowIndex, uint8_t columnIndex,
|
||||
Matrix<subRows, subColumns> &result) const {
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief write a copy of a sub matrix into this matrix starting at the given
|
||||
* idnex.
|
||||
* @param rowIndex The row index to start the copy from
|
||||
* @param columnIndex the column index to start the copy from
|
||||
* @param subMatrix The submatrix to copy into this matrix. The size of
|
||||
* the matrix buffer allows the function to determine the end indices of the
|
||||
* sub matrix
|
||||
*/
|
||||
template <uint8_t subRows, uint8_t subColumns>
|
||||
void CopySubMatrixInto(uint8_t rowIndex, uint8_t columnIndex,
|
||||
const Matrix<subRows, subColumns> &subMatrix) {}
|
||||
|
||||
/**
|
||||
* @brief Returns the norm of the matrix
|
||||
*/
|
||||
float Norm() { return 0; }
|
||||
|
||||
template <uint8_t vec1Length, uint8_t vec2Length>
|
||||
static Matrix<vec1Length, vec2Length> &
|
||||
OuterProduct(const Matrix<1, vec1Length> &vec1,
|
||||
const Matrix<1, vec2Length> &vec2,
|
||||
Matrix<vec1Length, vec2Length> &result) {
|
||||
return result;
|
||||
}
|
||||
|
||||
template <uint8_t vec1Length, uint8_t vec2Length>
|
||||
static Matrix<vec1Length, vec2Length> &
|
||||
OuterProduct(const Matrix<vec1Length, 1> &vec1,
|
||||
const Matrix<vec2Length, 1> &vec2,
|
||||
Matrix<vec1Length, vec2Length> &result) {
|
||||
return result;
|
||||
}
|
||||
/**
|
||||
* @brief Calulcate the QR decomposition of a matrix
|
||||
* @param Q the
|
||||
*/
|
||||
void QR_Decomposition(Matrix<rows, columns> &Q,
|
||||
Matrix<rows, columns> &R) const;
|
||||
float EuclideanNorm() const;
|
||||
|
||||
/**
|
||||
* @brief Get a row from the matrix
|
||||
@@ -211,8 +154,16 @@ public:
|
||||
*/
|
||||
constexpr uint8_t GetColumnSize() { return columns; }
|
||||
|
||||
/**
|
||||
* @brief Write a string representation of the matrix into the buffer
|
||||
*/
|
||||
void ToString(std::string &stringBuffer) const;
|
||||
|
||||
/**
|
||||
* @brief Returns the internal representation of the matrix as an array
|
||||
*/
|
||||
const float *ToArray() const;
|
||||
|
||||
/**
|
||||
* @brief Get an element from the matrix
|
||||
* @param row the row index of the element
|
||||
@@ -221,10 +172,6 @@ public:
|
||||
*/
|
||||
float Get(uint8_t row_index, uint8_t column_index) const;
|
||||
|
||||
// *******************************************************
|
||||
// ************** OPERATOR OVERRIDES *********************
|
||||
// *******************************************************
|
||||
|
||||
/**
|
||||
* @brief get the specified row of the matrix returned as a reference to the
|
||||
* internal array
|
||||
@@ -243,29 +190,68 @@ public:
|
||||
|
||||
Matrix<rows, columns> operator-(const Matrix<rows, columns> &other) const;
|
||||
|
||||
Matrix<rows, columns> operator*(const Matrix<rows, columns> &other) const;
|
||||
template <uint8_t other_columns>
|
||||
Matrix<rows, other_columns>
|
||||
operator*(const Matrix<columns, other_columns> &other) const;
|
||||
|
||||
Matrix<rows, columns> operator*(float scalar) const;
|
||||
|
||||
private:
|
||||
Matrix<rows, columns> operator/(float scalar) const;
|
||||
|
||||
template <uint8_t sub_rows, uint8_t sub_columns, uint8_t row_offset,
|
||||
uint8_t column_offset>
|
||||
Matrix<sub_rows, sub_columns> SubMatrix() const;
|
||||
|
||||
template <uint8_t sub_rows, uint8_t sub_columns>
|
||||
void SetSubMatrix(uint8_t rowOffset, uint8_t columnOffset,
|
||||
const Matrix<sub_rows, sub_columns> &sub_matrix);
|
||||
|
||||
/**
|
||||
* @brief take the dot product of the two vectors
|
||||
*/
|
||||
template <uint8_t vector_size>
|
||||
static float dotProduct(const Matrix<1, vector_size> &vec1,
|
||||
static float DotProduct(const Matrix<1, vector_size> &vec1,
|
||||
const Matrix<1, vector_size> &vec2);
|
||||
|
||||
template <uint8_t vector_size>
|
||||
static float dotProduct(const Matrix<vector_size, 1> &vec1,
|
||||
static float DotProduct(const Matrix<vector_size, 1> &vec1,
|
||||
const Matrix<vector_size, 1> &vec2);
|
||||
|
||||
static float DotProduct(const Matrix<1, 1> &vec1, const Matrix<1, 1> &vec2) {
|
||||
return vec1.Get(0, 0) * vec2.Get(0, 0);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Performs QR decomposition on this matrix
|
||||
* @param Q a buffer that will contain Q after the function completes
|
||||
* @param R a buffer that will contain R after the function completes
|
||||
*/
|
||||
void QRDecomposition(Matrix<rows, columns> &Q,
|
||||
Matrix<columns, columns> &R) const;
|
||||
|
||||
/**
|
||||
* @brief Uses QR decomposition to efficiently calculate the eigenvectors
|
||||
* and values of this matrix
|
||||
* @param eigenVectors a buffer that will contain the eigenvectors fo this
|
||||
* matrix
|
||||
* @param eigenValues a buffer that will contain the eigenValues fo this
|
||||
* matrix
|
||||
* @param maxIterations the number of iterations to perform before giving
|
||||
* up on reaching the given tolerance
|
||||
* @param tolerance the level of accuracy to obtain before stopping.
|
||||
*/
|
||||
void EigenQR(Matrix<rows, rows> &eigenVectors, Matrix<rows, 1> &eigenValues,
|
||||
uint32_t maxIterations = 1000, float tolerance = 1e-6f) const;
|
||||
|
||||
protected:
|
||||
std::array<float, rows * columns> matrix;
|
||||
|
||||
private:
|
||||
Matrix<rows, columns> &adjugate(Matrix<rows, columns> &result) const;
|
||||
|
||||
void setMatrixToArray(const std::array<float, rows * columns> &array);
|
||||
|
||||
std::array<float, rows * columns> matrix;
|
||||
};
|
||||
|
||||
#ifndef MATRIX_H_
|
||||
#include "Matrix.cpp"
|
||||
|
||||
#endif // MATRIX_H_
|
||||
120
src/Quaternion.cpp
Normal file
120
src/Quaternion.cpp
Normal file
@@ -0,0 +1,120 @@
|
||||
#include "Quaternion.h"
|
||||
#include <cmath>
|
||||
|
||||
/**
|
||||
* @brief Create a quaternion from an angle and axis
|
||||
* @param angle The angle to rotate by
|
||||
* @param axis The axis to rotate around
|
||||
*/
|
||||
Quaternion Quaternion::FromAngleAndAxis(float angle, const Matrix<1, 3> &axis) {
|
||||
const float halfAngle = angle / 2;
|
||||
const float sinHalfAngle = sin(halfAngle);
|
||||
Matrix<1, 3> normalizedAxis = axis / axis.EuclideanNorm();
|
||||
return Quaternion{static_cast<float>(cos(halfAngle)),
|
||||
normalizedAxis.Get(0, 0) * sinHalfAngle,
|
||||
normalizedAxis.Get(0, 1) * sinHalfAngle,
|
||||
normalizedAxis.Get(0, 2) * sinHalfAngle};
|
||||
}
|
||||
|
||||
float Quaternion::operator[](uint8_t index) const {
|
||||
if (index < 4) {
|
||||
return this->matrix[index];
|
||||
}
|
||||
|
||||
// index out of bounds
|
||||
return 1e+6;
|
||||
}
|
||||
|
||||
void Quaternion::operator=(const Quaternion &other) {
|
||||
memcpy(&(this->matrix), &(other.matrix), 4 * sizeof(float));
|
||||
}
|
||||
|
||||
Quaternion Quaternion::operator*(const Quaternion &other) const {
|
||||
Quaternion result{};
|
||||
this->Q_Mult(other, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
Quaternion Quaternion::operator*(float scalar) const {
|
||||
return Quaternion{this->w * scalar, this->v1 * scalar, this->v2 * scalar,
|
||||
this->v3 * scalar};
|
||||
}
|
||||
|
||||
Quaternion Quaternion::operator+(const Quaternion &other) const {
|
||||
return Quaternion{this->w + other.w, this->v1 + other.v1, this->v2 + other.v2,
|
||||
this->v3 + other.v3};
|
||||
}
|
||||
|
||||
Quaternion &Quaternion::Q_Mult(const Quaternion &other,
|
||||
Quaternion &buffer) const {
|
||||
|
||||
// eq. 6
|
||||
buffer.w = (other.w * this->w - other.v1 * this->v1 - other.v2 * this->v2 -
|
||||
other.v3 * this->v3);
|
||||
buffer.v1 = (other.w * this->v1 + other.v1 * this->w - other.v2 * this->v3 +
|
||||
other.v3 * this->v2);
|
||||
buffer.v2 = (other.w * this->v2 + other.v1 * this->v3 + other.v2 * this->w -
|
||||
other.v3 * this->v1);
|
||||
buffer.v3 = (other.w * this->v3 - other.v1 * this->v2 + other.v2 * this->v1 +
|
||||
other.v3 * this->w);
|
||||
return buffer;
|
||||
}
|
||||
|
||||
Quaternion &Quaternion::Rotate(Quaternion &other, Quaternion &buffer) const {
|
||||
Quaternion prime{this->w, -this->v1, -this->v2, -this->v3};
|
||||
buffer.v1 = other.v1;
|
||||
buffer.v2 = other.v2;
|
||||
buffer.v3 = other.v3;
|
||||
buffer.w = 0;
|
||||
|
||||
Quaternion temp{};
|
||||
this->Q_Mult(buffer, temp);
|
||||
temp.Q_Mult(prime, buffer);
|
||||
return buffer;
|
||||
}
|
||||
|
||||
void Quaternion::Normalize() {
|
||||
float magnitude = sqrt(this->v1 * this->v1 + this->v2 * this->v2 +
|
||||
this->v3 * this->v3 + this->w * this->w);
|
||||
if (magnitude == 0) {
|
||||
return;
|
||||
}
|
||||
this->v1 /= magnitude;
|
||||
this->v2 /= magnitude;
|
||||
this->v3 /= magnitude;
|
||||
this->w /= magnitude;
|
||||
}
|
||||
|
||||
Matrix<3, 3> Quaternion::ToRotationMatrix() const {
|
||||
float xx = this->v1 * this->v1;
|
||||
float yy = this->v2 * this->v2;
|
||||
float zz = this->v3 * this->v3;
|
||||
Matrix<3, 3> rotationMatrix{1 - 2 * (yy - zz),
|
||||
2 * (this->v1 * this->v2 - this->v3 * this->w),
|
||||
2 * (this->v1 * this->v3 + this->v2 * this->w),
|
||||
2 * (this->v1 * this->v2 + this->v3 * this->w),
|
||||
1 - 2 * (xx - zz),
|
||||
2 * (this->v2 * this->v3 - this->v1 * this->w),
|
||||
2 * (this->v1 * this->v3 - this->v2 * this->w),
|
||||
2 * (this->v2 * this->v3 + this->v1 * this->w),
|
||||
1 - 2 * (xx - yy)};
|
||||
return rotationMatrix;
|
||||
};
|
||||
|
||||
Matrix<3, 1> Quaternion::ToEulerAngle() const {
|
||||
float sqv1 = this->v1 * this->v1;
|
||||
float sqv2 = this->v2 * this->v2;
|
||||
float sqv3 = this->v3 * this->v3;
|
||||
float sqw = this->w * this->w;
|
||||
|
||||
Matrix<3, 1> eulerAngle;
|
||||
{
|
||||
atan2(2.0 * (this->v1 * this->v2 + this->v3 * this->w),
|
||||
(sqv1 - sqv2 - sqv3 + sqw));
|
||||
asin(-2.0 * (this->v1 * this->v3 - this->v2 * this->w) /
|
||||
(sqv1 + sqv2 + sqv3 + sqw));
|
||||
atan2(2.0 * (this->v2 * this->v3 + this->v1 * this->w),
|
||||
(-sqv1 - sqv2 + sqv3 + sqw));
|
||||
};
|
||||
return eulerAngle;
|
||||
}
|
||||
90
src/Quaternion.h
Normal file
90
src/Quaternion.h
Normal file
@@ -0,0 +1,90 @@
|
||||
#ifndef QUATERNION_H_
|
||||
#define QUATERNION_H_
|
||||
|
||||
#include "Matrix.hpp"
|
||||
class Quaternion : public Matrix<1, 4> {
|
||||
public:
|
||||
Quaternion() : Matrix<1, 4>() {}
|
||||
Quaternion(float w, float v1, float v2, float v3)
|
||||
: Matrix<1, 4>(w, v1, v2, v3) {}
|
||||
Quaternion(const Quaternion &q) : Matrix<1, 4>(q.w, q.v1, q.v2, q.v3) {}
|
||||
Quaternion(const Matrix<1, 4> &matrix) : Matrix<1, 4>(matrix) {}
|
||||
Quaternion(const std::array<float, 4> &array) : Matrix<1, 4>(array) {}
|
||||
|
||||
/**
|
||||
* @brief Create a quaternion from an angle and axis
|
||||
* @param angle The angle to rotate by
|
||||
* @param axis The axis to rotate around
|
||||
*/
|
||||
static Quaternion FromAngleAndAxis(float angle, const Matrix<1, 3> &axis);
|
||||
|
||||
/**
|
||||
* @brief Access the elements of the quaternion
|
||||
* @param index The index of the element to access
|
||||
* @return The value of the element at the index
|
||||
*/
|
||||
float operator[](uint8_t index) const;
|
||||
|
||||
/**
|
||||
* @brief Assign one quaternion to another
|
||||
*/
|
||||
void operator=(const Quaternion &other);
|
||||
|
||||
/**
|
||||
* @brief Do quaternion multiplication
|
||||
*/
|
||||
Quaternion operator*(const Quaternion &other) const;
|
||||
|
||||
/**
|
||||
* @brief Multiply the quaternion by a scalar
|
||||
*/
|
||||
Quaternion operator*(float scalar) const;
|
||||
|
||||
/**
|
||||
* @brief Add two quaternions together
|
||||
* @param other The quaternion to add to this one
|
||||
* @return The net quaternion
|
||||
*/
|
||||
Quaternion operator+(const Quaternion &other) const;
|
||||
|
||||
/**
|
||||
* @brief Q_Mult a quaternion by another quaternion
|
||||
* @param other The quaternion to rotate by
|
||||
* @param buffer The buffer to store the result in
|
||||
* @return A reference to the buffer
|
||||
*/
|
||||
Quaternion &Q_Mult(const Quaternion &other, Quaternion &buffer) const;
|
||||
|
||||
/**
|
||||
* @brief Rotate a quaternion by this quaternion
|
||||
* @param other The quaternion to rotate
|
||||
* @param buffer The buffer to store the result in
|
||||
*
|
||||
*/
|
||||
Quaternion &Rotate(Quaternion &other, Quaternion &buffer) const;
|
||||
|
||||
/**
|
||||
* @brief Normalize the quaternion to a magnitude of 1
|
||||
*/
|
||||
void Normalize();
|
||||
|
||||
/**
|
||||
* @brief Convert the quaternion to a rotation matrix
|
||||
* @return The rotation matrix
|
||||
*/
|
||||
Matrix<3, 3> ToRotationMatrix() const;
|
||||
|
||||
/**
|
||||
* @brief Convert the quaternion to an Euler angle representation
|
||||
* @return The Euler angle representation of the quaternion
|
||||
*/
|
||||
Matrix<3, 1> ToEulerAngle() const;
|
||||
|
||||
// Give people an easy way to access the elements
|
||||
float &w{matrix[0]};
|
||||
float &v1{matrix[1]};
|
||||
float &v2{matrix[2]};
|
||||
float &v3{matrix[3]};
|
||||
};
|
||||
|
||||
#endif // QUATERNION_H_
|
||||
162
src/Vector3D.cpp
Normal file
162
src/Vector3D.cpp
Normal file
@@ -0,0 +1,162 @@
|
||||
#ifdef VECTOR3D_H_ // since the .cpp file has to be included by the .hpp file this
|
||||
// will evaluate to true
|
||||
#include <cmath>
|
||||
#include <type_traits>
|
||||
#include <string>
|
||||
|
||||
template <typename Type>
|
||||
V3D<Type>::V3D(const Matrix<1, 3> &other)
|
||||
{
|
||||
this->x = other.Get(0, 0);
|
||||
this->y = other.Get(0, 1);
|
||||
this->z = other.Get(0, 2);
|
||||
}
|
||||
|
||||
template <typename Type>
|
||||
V3D<Type>::V3D(const Matrix<3, 1> &other)
|
||||
{
|
||||
this->x = other.Get(0, 0);
|
||||
this->y = other.Get(1, 0);
|
||||
this->z = other.Get(2, 0);
|
||||
}
|
||||
|
||||
template <typename Type>
|
||||
V3D<Type>::V3D(const V3D &other) : x(other.x),
|
||||
y(other.y),
|
||||
z(other.z)
|
||||
{
|
||||
static_assert(std::is_arithmetic<Type>::value, "Type must be a number");
|
||||
}
|
||||
|
||||
template <typename Type>
|
||||
V3D<Type>::V3D(Type x, Type y, Type z) : x(x),
|
||||
y(y),
|
||||
z(z)
|
||||
{
|
||||
static_assert(std::is_arithmetic<Type>::value, "Type must be a number");
|
||||
}
|
||||
|
||||
template <typename Type>
|
||||
template <typename OtherType>
|
||||
V3D<Type>::V3D(const V3D<OtherType> &other)
|
||||
{
|
||||
static_assert(std::is_arithmetic<Type>::value, "Type must be a number");
|
||||
static_assert(std::is_arithmetic<OtherType>::value, "OtherType must be a number");
|
||||
this->x = static_cast<Type>(other.x);
|
||||
this->y = static_cast<Type>(other.y);
|
||||
this->z = static_cast<Type>(other.z);
|
||||
}
|
||||
|
||||
template <typename Type>
|
||||
std::array<Type, 3> V3D<Type>::ToArray() const
|
||||
{
|
||||
return {this->x, this->y, this->z};
|
||||
}
|
||||
|
||||
template <typename Type>
|
||||
void V3D<Type>::operator=(const V3D<Type> &other)
|
||||
{
|
||||
this->x = other.x;
|
||||
this->y = other.y;
|
||||
this->z = other.z;
|
||||
}
|
||||
|
||||
template <typename Type>
|
||||
V3D<Type> V3D<Type>::operator+(Type other) const
|
||||
{
|
||||
return V3D<Type>{this->x + other, this->y + other, this->z + other};
|
||||
}
|
||||
|
||||
template <typename Type>
|
||||
V3D<Type> V3D<Type>::operator+(const V3D<Type> &other) const
|
||||
{
|
||||
return V3D<Type>{this->x + other.x, this->y + other.y, this->z + other.z};
|
||||
}
|
||||
|
||||
template <typename Type>
|
||||
V3D<Type> V3D<Type>::operator-(Type other) const
|
||||
{
|
||||
return V3D<Type>{this->x - other, this->y - other, this->z - other};
|
||||
}
|
||||
|
||||
template <typename Type>
|
||||
V3D<Type> V3D<Type>::operator-(const V3D<Type> &other) const
|
||||
{
|
||||
return V3D<Type>{this->x - other.x, this->y - other.y, this->z - other.z};
|
||||
}
|
||||
|
||||
template <typename Type>
|
||||
V3D<Type> V3D<Type>::operator*(Type scalar) const
|
||||
{
|
||||
return V3D<Type>{this->x * scalar, this->y * scalar, this->z * scalar};
|
||||
}
|
||||
|
||||
template <typename Type>
|
||||
V3D<Type> V3D<Type>::operator/(Type scalar) const
|
||||
{
|
||||
return V3D<Type>{this->x / scalar, this->y / scalar, this->z / scalar};
|
||||
}
|
||||
|
||||
template <typename Type>
|
||||
V3D<Type> &V3D<Type>::operator+=(Type other)
|
||||
{
|
||||
*this = *this + other;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename Type>
|
||||
V3D<Type> &V3D<Type>::operator+=(const V3D<Type> &other)
|
||||
{
|
||||
*this = *this + other;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename Type>
|
||||
V3D<Type> &V3D<Type>::operator-=(Type other)
|
||||
{
|
||||
*this = *this - other;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename Type>
|
||||
V3D<Type> &V3D<Type>::operator-=(const V3D<Type> &other)
|
||||
{
|
||||
*this = *this - other;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename Type>
|
||||
V3D<Type> &V3D<Type>::operator/=(Type scalar)
|
||||
{
|
||||
if (scalar == 0)
|
||||
{
|
||||
return *this;
|
||||
}
|
||||
this->x /= scalar;
|
||||
this->y /= scalar;
|
||||
this->z /= scalar;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename Type>
|
||||
V3D<Type> &V3D<Type>::operator*=(Type scalar)
|
||||
{
|
||||
this->x *= scalar;
|
||||
this->y *= scalar;
|
||||
this->z *= scalar;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename Type>
|
||||
bool V3D<Type>::operator==(const V3D<Type> &other)
|
||||
{
|
||||
return this->x == other.x && this->y == other.y && this->z == other.z;
|
||||
}
|
||||
|
||||
template <typename Type>
|
||||
float V3D<Type>::magnitude()
|
||||
{
|
||||
return std::sqrt(static_cast<float>(this->x * this->x + this->y * this->y + this->z * this->z));
|
||||
}
|
||||
|
||||
#endif // VECTOR3D_H_
|
||||
58
src/Vector3D.hpp
Normal file
58
src/Vector3D.hpp
Normal file
@@ -0,0 +1,58 @@
|
||||
#ifndef VECTOR3D_H_
|
||||
#define VECTOR3D_H_
|
||||
|
||||
#include <cstdint>
|
||||
#include "Matrix.hpp"
|
||||
|
||||
template <typename Type>
|
||||
class V3D
|
||||
{
|
||||
public:
|
||||
V3D(const Matrix<1, 3> &other);
|
||||
V3D(const Matrix<3, 1> &other);
|
||||
|
||||
V3D(const V3D &other);
|
||||
|
||||
V3D(Type x = 0, Type y = 0, Type z = 0);
|
||||
|
||||
template <typename OtherType>
|
||||
V3D(const V3D<OtherType> &other);
|
||||
|
||||
template <typename OtherType>
|
||||
operator OtherType() const;
|
||||
|
||||
std::array<Type, 3> ToArray() const;
|
||||
|
||||
V3D<Type> operator+(Type other) const;
|
||||
V3D<Type> operator+(const V3D<Type> &other) const;
|
||||
|
||||
V3D<Type> operator-(Type other) const;
|
||||
V3D<Type> operator-(const V3D<Type> &other) const;
|
||||
|
||||
V3D<Type> operator*(Type scalar) const;
|
||||
|
||||
V3D<Type> operator/(Type scalar) const;
|
||||
|
||||
void operator=(const V3D<Type> &other);
|
||||
|
||||
V3D<Type> &operator+=(Type other);
|
||||
V3D<Type> &operator+=(const V3D<Type> &other);
|
||||
|
||||
V3D<Type> &operator-=(Type other);
|
||||
V3D<Type> &operator-=(const V3D<Type> &other);
|
||||
|
||||
V3D<Type> &operator/=(Type scalar);
|
||||
|
||||
V3D<Type> &operator*=(Type scalar);
|
||||
|
||||
bool operator==(const V3D<Type> &other);
|
||||
|
||||
float magnitude();
|
||||
|
||||
Type x;
|
||||
Type y;
|
||||
Type z;
|
||||
};
|
||||
|
||||
#include "Vector3D.cpp"
|
||||
#endif // VECTOR3D_H_
|
||||
@@ -1,21 +1,35 @@
|
||||
cmake_minimum_required (VERSION 3.11)
|
||||
# Quaternion tests
|
||||
add_executable(quaternion-tests quaternion-tests.cpp)
|
||||
|
||||
project ("test_driver")
|
||||
|
||||
include(FetchContent)
|
||||
|
||||
FetchContent_Declare(
|
||||
Catch2
|
||||
GIT_REPOSITORY https://github.com/catchorg/Catch2.git
|
||||
GIT_TAG v3.0.1 # or a later release
|
||||
target_link_libraries(quaternion-tests
|
||||
PRIVATE
|
||||
quaternion
|
||||
Catch2::Catch2WithMain
|
||||
)
|
||||
|
||||
FetchContent_MakeAvailable(Catch2)
|
||||
|
||||
# matrix tests
|
||||
add_executable(matrix-tests matrix-tests.cpp)
|
||||
|
||||
target_link_libraries(matrix-tests
|
||||
PRIVATE
|
||||
Matrix
|
||||
matrix
|
||||
Catch2::Catch2WithMain
|
||||
)
|
||||
|
||||
# matrix timing tests
|
||||
add_executable(matrix-timing-tests matrix-timing-tests.cpp)
|
||||
|
||||
target_link_libraries(matrix-timing-tests
|
||||
PRIVATE
|
||||
matrix
|
||||
Catch2::Catch2WithMain
|
||||
)
|
||||
|
||||
# Vector 3D Tests
|
||||
add_executable(vector-3d-tests vector-tests.cpp)
|
||||
|
||||
target_link_libraries(vector-3d-tests
|
||||
PRIVATE
|
||||
vector-3d
|
||||
Catch2::Catch2WithMain
|
||||
)
|
||||
@@ -1,14 +0,0 @@
|
||||
Addition: 0.419 s
|
||||
Subtraction: 0.421 s
|
||||
Multiplication: 3.297 s
|
||||
Scalar Multiplication: 0.329 s
|
||||
Element Multiply: 0.306 s
|
||||
Element Divide: 0.302 s
|
||||
Minor Matrix: 0.331 s
|
||||
Determinant: 0.177 s
|
||||
Matrix of Minors: 0.766 s
|
||||
Invert: 0.183 s
|
||||
Transpose: 0.215 s
|
||||
Normalize: 0.315 s
|
||||
GET ROW: 0.008 s
|
||||
GET COLUMN: 0.43 s
|
||||
@@ -10,41 +10,61 @@
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
|
||||
// Helper functions
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
float matrixSum(const Matrix<rows, columns> &matrix) {
|
||||
float sum = 0;
|
||||
for (uint32_t i = 0; i < rows * columns; i++) {
|
||||
float number = matrix.ToArray()[i];
|
||||
sum += number * number;
|
||||
}
|
||||
return std::sqrt(sum);
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
void printLabeledMatrix(const std::string &label,
|
||||
const Matrix<rows, columns> &matrix) {
|
||||
std::string strBuf = "";
|
||||
matrix.ToString(strBuf);
|
||||
std::cout << label << ":\n" << strBuf << std::endl;
|
||||
}
|
||||
|
||||
TEST_CASE("Initialization", "Matrix") {
|
||||
SECTION("Array Initialization") {
|
||||
std::array<float, 4> arr2{5, 6, 7, 8};
|
||||
Matrix<2, 2> mat2{arr2};
|
||||
// array initialization
|
||||
REQUIRE(mat2.Get(0, 0) == 5);
|
||||
REQUIRE(mat2.Get(0, 1) == 6);
|
||||
REQUIRE(mat2.Get(1, 0) == 7);
|
||||
REQUIRE(mat2.Get(1, 1) == 8);
|
||||
}
|
||||
|
||||
SECTION("Argument Pack Initialization") {
|
||||
Matrix<2, 2> mat1{1, 2, 3, 4};
|
||||
// template pack initialization
|
||||
REQUIRE(mat1.Get(0, 0) == 1);
|
||||
REQUIRE(mat1.Get(0, 1) == 2);
|
||||
REQUIRE(mat1.Get(1, 0) == 3);
|
||||
REQUIRE(mat1.Get(1, 1) == 4);
|
||||
}
|
||||
|
||||
SECTION("Single Argument Pack Initialization") {
|
||||
Matrix<2, 2> mat1{2};
|
||||
// template pack initialization
|
||||
REQUIRE(mat1.Get(0, 0) == 2);
|
||||
REQUIRE(mat1.Get(0, 1) == 2);
|
||||
REQUIRE(mat1.Get(1, 0) == 2);
|
||||
REQUIRE(mat1.Get(1, 1) == 2);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Elementary Matrix Operations", "Matrix") {
|
||||
std::array<float, 4> arr2{5, 6, 7, 8};
|
||||
Matrix<2, 2> mat1{1, 2, 3, 4};
|
||||
Matrix<2, 2> mat2{arr2};
|
||||
Matrix<2, 2> mat3{};
|
||||
|
||||
SECTION("Initialization") {
|
||||
// array initialization
|
||||
REQUIRE(mat1.Get(0, 0) == 1);
|
||||
REQUIRE(mat1.Get(0, 1) == 2);
|
||||
REQUIRE(mat1.Get(1, 0) == 3);
|
||||
REQUIRE(mat1.Get(1, 1) == 4);
|
||||
|
||||
// empty initialization
|
||||
REQUIRE(mat3.Get(0, 0) == 0);
|
||||
REQUIRE(mat3.Get(0, 1) == 0);
|
||||
REQUIRE(mat3.Get(1, 0) == 0);
|
||||
REQUIRE(mat3.Get(1, 1) == 0);
|
||||
|
||||
// template pack initialization
|
||||
REQUIRE(mat2.Get(0, 0) == 5);
|
||||
REQUIRE(mat2.Get(0, 1) == 6);
|
||||
REQUIRE(mat2.Get(1, 0) == 7);
|
||||
REQUIRE(mat2.Get(1, 1) == 8);
|
||||
|
||||
// large matrix
|
||||
Matrix<255, 255> mat6{};
|
||||
mat6.Fill(4);
|
||||
for (uint8_t row{0}; row < 255; row++) {
|
||||
for (uint8_t column{0}; column < 255; column++) {
|
||||
REQUIRE(mat6.Get(row, column) == 4);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Fill") {
|
||||
mat1.Fill(0);
|
||||
REQUIRE(mat1.Get(0, 0) == 0);
|
||||
@@ -66,10 +86,6 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
|
||||
}
|
||||
|
||||
SECTION("Addition") {
|
||||
std::string strBuf1 = "";
|
||||
mat1.ToString(strBuf1);
|
||||
std::cout << "Matrix 1:\n" << strBuf1 << std::endl;
|
||||
|
||||
mat1.Add(mat2, mat3);
|
||||
|
||||
REQUIRE(mat3.Get(0, 0) == 6);
|
||||
@@ -118,6 +134,36 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
|
||||
REQUIRE(mat3.Get(0, 1) == 22);
|
||||
REQUIRE(mat3.Get(1, 0) == 43);
|
||||
REQUIRE(mat3.Get(1, 1) == 50);
|
||||
|
||||
// Non-square multiplication
|
||||
Matrix<2, 4> mat4{1, 2, 3, 4, 5, 6, 7, 8};
|
||||
Matrix<4, 2> mat5{9, 10, 11, 12, 13, 14, 15, 16};
|
||||
Matrix<2, 2> mat6{};
|
||||
mat6 = mat4 * mat5;
|
||||
REQUIRE(mat6.Get(0, 0) == 130);
|
||||
REQUIRE(mat6.Get(0, 1) == 140);
|
||||
REQUIRE(mat6.Get(1, 0) == 322);
|
||||
REQUIRE(mat6.Get(1, 1) == 348);
|
||||
|
||||
// One more non-square multiplicaiton
|
||||
Matrix<4, 4> mat7{};
|
||||
mat7 = mat5 * mat4;
|
||||
REQUIRE(mat7.Get(0, 0) == 59);
|
||||
REQUIRE(mat7.Get(0, 1) == 78);
|
||||
REQUIRE(mat7.Get(0, 2) == 97);
|
||||
REQUIRE(mat7.Get(0, 3) == 116);
|
||||
REQUIRE(mat7.Get(1, 0) == 71);
|
||||
REQUIRE(mat7.Get(1, 1) == 94);
|
||||
REQUIRE(mat7.Get(1, 2) == 117);
|
||||
REQUIRE(mat7.Get(1, 3) == 140);
|
||||
REQUIRE(mat7.Get(2, 0) == 83);
|
||||
REQUIRE(mat7.Get(2, 1) == 110);
|
||||
REQUIRE(mat7.Get(2, 2) == 137);
|
||||
REQUIRE(mat7.Get(2, 3) == 164);
|
||||
REQUIRE(mat7.Get(3, 0) == 95);
|
||||
REQUIRE(mat7.Get(3, 1) == 126);
|
||||
REQUIRE(mat7.Get(3, 2) == 157);
|
||||
REQUIRE(mat7.Get(3, 3) == 188);
|
||||
}
|
||||
|
||||
SECTION("Scalar Multiplication") {
|
||||
@@ -182,18 +228,6 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
|
||||
REQUIRE(minorMat4.Get(1, 0) == 4);
|
||||
REQUIRE(minorMat4.Get(1, 1) == 5);
|
||||
}
|
||||
SECTION("Identity Matrix") {
|
||||
Matrix<3, 3> mat4{Matrix<3, 3>::Eye()};
|
||||
REQUIRE(mat4.Get(0, 0) == 1);
|
||||
REQUIRE(mat4.Get(0, 1) == 0);
|
||||
REQUIRE(mat4.Get(0, 2) == 0);
|
||||
REQUIRE(mat4.Get(1, 0) == 0);
|
||||
REQUIRE(mat4.Get(1, 1) == 1);
|
||||
REQUIRE(mat4.Get(1, 2) == 0);
|
||||
REQUIRE(mat4.Get(2, 0) == 0);
|
||||
REQUIRE(mat4.Get(2, 1) == 0);
|
||||
REQUIRE(mat4.Get(2, 2) == 1);
|
||||
}
|
||||
|
||||
SECTION("Determinant") {
|
||||
float det1 = mat1.Det();
|
||||
@@ -234,7 +268,7 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
|
||||
}
|
||||
|
||||
SECTION("Invert") {
|
||||
mat1.Invert(mat3);
|
||||
mat3 = mat1.Invert();
|
||||
REQUIRE_THAT(mat3.Get(0, 0), Catch::Matchers::WithinRel(-2.0F, 1e-6f));
|
||||
REQUIRE_THAT(mat3.Get(0, 1), Catch::Matchers::WithinRel(1.0F, 1e-6f));
|
||||
REQUIRE_THAT(mat3.Get(1, 0), Catch::Matchers::WithinRel(1.5F, 1e-6f));
|
||||
@@ -243,7 +277,7 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
|
||||
|
||||
SECTION("Transpose") {
|
||||
// transpose a square matrix
|
||||
mat1.Transpose(mat3);
|
||||
mat3 = mat1.Transpose();
|
||||
|
||||
REQUIRE(mat3.Get(0, 0) == 1);
|
||||
REQUIRE(mat3.Get(0, 1) == 3);
|
||||
@@ -254,7 +288,7 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
|
||||
Matrix<2, 3> mat4{1, 2, 3, 4, 5, 6};
|
||||
Matrix<3, 2> mat5{};
|
||||
|
||||
mat4.Transpose(mat5);
|
||||
mat5 = mat4.Transpose();
|
||||
|
||||
REQUIRE(mat5.Get(0, 0) == 1);
|
||||
REQUIRE(mat5.Get(0, 1) == 4);
|
||||
@@ -264,26 +298,6 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
|
||||
REQUIRE(mat5.Get(2, 1) == 6);
|
||||
}
|
||||
|
||||
SECTION("Normalize") {
|
||||
mat1.Normalize(mat3);
|
||||
|
||||
float sqrt_30{sqrt(30)};
|
||||
|
||||
REQUIRE(mat3.Get(0, 0) == 1 / sqrt_30);
|
||||
REQUIRE(mat3.Get(0, 1) == 2 / sqrt_30);
|
||||
REQUIRE(mat3.Get(1, 0) == 3 / sqrt_30);
|
||||
REQUIRE(mat3.Get(1, 1) == 4 / sqrt_30);
|
||||
|
||||
Matrix<2, 1> mat4{-0.878877044, 2.92092276};
|
||||
Matrix<2, 1> mat5{};
|
||||
mat4.Normalize(mat5);
|
||||
|
||||
REQUIRE_THAT(mat5.Get(0, 0),
|
||||
Catch::Matchers::WithinRel(-0.288129855179f, 1e-6f));
|
||||
REQUIRE_THAT(mat5.Get(1, 0),
|
||||
Catch::Matchers::WithinRel(0.957591346325f, 1e-6f));
|
||||
}
|
||||
|
||||
SECTION("GET ROW") {
|
||||
Matrix<1, 2> mat1Rows{};
|
||||
mat1.GetRow(0, mat1Rows);
|
||||
@@ -305,113 +319,322 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
|
||||
REQUIRE(mat1Columns.Get(0, 0) == 2);
|
||||
REQUIRE(mat1Columns.Get(1, 0) == 4);
|
||||
}
|
||||
|
||||
SECTION("Get Sub-Matrices") {
|
||||
Matrix<3, 3> mat4{1, 2, 3, 4, 5, 6, 7, 8, 9};
|
||||
|
||||
Matrix<2, 2> mat5 = mat4.SubMatrix<2, 2, 0, 0>();
|
||||
|
||||
REQUIRE(mat5.Get(0, 0) == 1);
|
||||
REQUIRE(mat5.Get(0, 1) == 2);
|
||||
REQUIRE(mat5.Get(1, 0) == 4);
|
||||
REQUIRE(mat5.Get(1, 1) == 5);
|
||||
|
||||
mat5 = mat4.SubMatrix<2, 2, 1, 1>();
|
||||
REQUIRE(mat5.Get(0, 0) == 5);
|
||||
REQUIRE(mat5.Get(0, 1) == 6);
|
||||
REQUIRE(mat5.Get(1, 0) == 8);
|
||||
REQUIRE(mat5.Get(1, 1) == 9);
|
||||
|
||||
Matrix<3, 1> mat6 = mat4.SubMatrix<3, 1, 0, 0>();
|
||||
REQUIRE(mat6.Get(0, 0) == 1);
|
||||
REQUIRE(mat6.Get(1, 0) == 4);
|
||||
REQUIRE(mat6.Get(2, 0) == 7);
|
||||
|
||||
Matrix<1, 3> mat7 = mat4.SubMatrix<1, 3, 0, 0>();
|
||||
REQUIRE(mat7.Get(0, 0) == 1);
|
||||
REQUIRE(mat7.Get(0, 1) == 2);
|
||||
REQUIRE(mat7.Get(0, 2) == 3);
|
||||
}
|
||||
|
||||
// basically re-run all of the previous tests with huge matrices and time the
|
||||
// results.
|
||||
TEST_CASE("Timing Tests", "Matrix") {
|
||||
std::array<float, 50 * 50> arr1{};
|
||||
for (uint16_t i{0}; i < 50 * 50; i++) {
|
||||
arr1[i] = i;
|
||||
}
|
||||
std::array<float, 50 * 50> arr2{5, 6, 7, 8};
|
||||
for (uint16_t i{50 * 50}; i < 2 * 50 * 50; i++) {
|
||||
arr2[i] = i;
|
||||
}
|
||||
Matrix<50, 50> mat1{arr1};
|
||||
Matrix<50, 50> mat2{arr2};
|
||||
Matrix<50, 50> mat3{};
|
||||
SECTION("Set Sub-Matrices") {
|
||||
Matrix<3, 3> startMatrix{1, 2, 3, 4, 5, 6, 7, 8, 9};
|
||||
Matrix<3, 3> mat4 = startMatrix;
|
||||
|
||||
// A smaller matrix to use for really badly optimized operations
|
||||
Matrix<4, 4> mat4{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
|
||||
Matrix<4, 4> mat5{};
|
||||
Matrix<2, 2> mat5{10, 11, 12, 13};
|
||||
mat4.SetSubMatrix(0, 0, mat5);
|
||||
REQUIRE(mat4.Get(0, 0) == 10);
|
||||
REQUIRE(mat4.Get(0, 1) == 11);
|
||||
REQUIRE(mat4.Get(1, 0) == 12);
|
||||
REQUIRE(mat4.Get(1, 1) == 13);
|
||||
|
||||
SECTION("Addition") {
|
||||
for (uint32_t i{0}; i < 10000; i++) {
|
||||
mat3 = mat1 + mat2;
|
||||
mat4 = startMatrix;
|
||||
mat4.SetSubMatrix(1, 1, mat5);
|
||||
REQUIRE(mat4.Get(1, 1) == 10);
|
||||
REQUIRE(mat4.Get(1, 2) == 11);
|
||||
REQUIRE(mat4.Get(2, 1) == 12);
|
||||
REQUIRE(mat4.Get(2, 2) == 13);
|
||||
|
||||
Matrix<3, 1> mat6{10, 11, 12};
|
||||
mat4.SetSubMatrix(0, 0, mat6);
|
||||
REQUIRE(mat4.Get(0, 0) == 10);
|
||||
REQUIRE(mat4.Get(1, 0) == 11);
|
||||
REQUIRE(mat4.Get(2, 0) == 12);
|
||||
|
||||
Matrix<1, 3> mat7{10, 11, 12};
|
||||
mat4.SetSubMatrix(0, 0, mat7);
|
||||
REQUIRE(mat4.Get(0, 0) == 10);
|
||||
REQUIRE(mat4.Get(0, 1) == 11);
|
||||
REQUIRE(mat4.Get(0, 2) == 12);
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Subtraction") {
|
||||
for (uint32_t i{0}; i < 10000; i++) {
|
||||
mat3 = mat1 - mat2;
|
||||
TEST_CASE("Identity Matrix", "Matrix") {
|
||||
SECTION("Square Matrix") {
|
||||
Matrix<5, 5> matrix = Matrix<5, 5>::Identity();
|
||||
uint32_t oneColumnIndex{0};
|
||||
for (uint32_t row = 0; row < 5; row++) {
|
||||
for (uint32_t column = 0; column < 5; column++) {
|
||||
float value = matrix[row][column];
|
||||
if (oneColumnIndex == column) {
|
||||
REQUIRE_THAT(value, Catch::Matchers::WithinRel(1.0f, 1e-6f));
|
||||
} else {
|
||||
REQUIRE_THAT(value, Catch::Matchers::WithinRel(0.0f, 1e-6f));
|
||||
}
|
||||
}
|
||||
oneColumnIndex++;
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Multiplication") {
|
||||
for (uint32_t i{0}; i < 1000; i++) {
|
||||
mat3 = mat1 * mat2;
|
||||
SECTION("Wide Matrix") {
|
||||
Matrix<2, 5> matrix = Matrix<2, 5>::Identity();
|
||||
|
||||
uint32_t oneColumnIndex{0};
|
||||
for (uint32_t row = 0; row < 2; row++) {
|
||||
for (uint32_t column = 0; column < 5; column++) {
|
||||
float value = matrix[row][column];
|
||||
if (oneColumnIndex == column && row < 3) {
|
||||
REQUIRE_THAT(value, Catch::Matchers::WithinRel(1.0f, 1e-6f));
|
||||
} else {
|
||||
REQUIRE_THAT(value, Catch::Matchers::WithinRel(0.0f, 1e-6f));
|
||||
}
|
||||
}
|
||||
oneColumnIndex++;
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Scalar Multiplication") {
|
||||
for (uint32_t i{0}; i < 10000; i++) {
|
||||
mat3 = mat1 * 3;
|
||||
SECTION("Tall Matrix") {
|
||||
Matrix<5, 2> matrix = Matrix<5, 2>::Identity();
|
||||
uint32_t oneColumnIndex{0};
|
||||
for (uint32_t row = 0; row < 5; row++) {
|
||||
for (uint32_t column = 0; column < 2; column++) {
|
||||
float value = matrix[row][column];
|
||||
if (oneColumnIndex == column) {
|
||||
REQUIRE_THAT(value, Catch::Matchers::WithinRel(1.0f, 1e-6f));
|
||||
} else {
|
||||
REQUIRE_THAT(value, Catch::Matchers::WithinRel(0.0f, 1e-6f));
|
||||
}
|
||||
}
|
||||
oneColumnIndex++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Element Multiply") {
|
||||
for (uint32_t i{0}; i < 10000; i++) {
|
||||
mat1.ElementMultiply(mat2, mat3);
|
||||
// TODO: Add test for scalar division
|
||||
TEST_CASE("Euclidean Norm", "Matrix") {
|
||||
|
||||
SECTION("2x2 Normalize") {
|
||||
Matrix<2, 2> mat1{1, 2, 3, 4};
|
||||
Matrix<2, 2> mat2{};
|
||||
|
||||
mat2 = mat1 / mat1.EuclideanNorm();
|
||||
|
||||
float sqrt_30{static_cast<float>(sqrt(30.0f))};
|
||||
|
||||
REQUIRE(mat2.Get(0, 0) == 1 / sqrt_30);
|
||||
REQUIRE(mat2.Get(0, 1) == 2 / sqrt_30);
|
||||
REQUIRE(mat2.Get(1, 0) == 3 / sqrt_30);
|
||||
REQUIRE(mat2.Get(1, 1) == 4 / sqrt_30);
|
||||
|
||||
REQUIRE_THAT(matrixSum(mat2), Catch::Matchers::WithinRel(1.0f, 1e-6f));
|
||||
}
|
||||
|
||||
SECTION("2x1 (Vector) Normalize") {
|
||||
Matrix<2, 1> mat1{-0.878877044, 2.92092276};
|
||||
Matrix<2, 1> mat2{};
|
||||
mat2 = mat1 / mat1.EuclideanNorm();
|
||||
|
||||
REQUIRE_THAT(mat2.Get(0, 0),
|
||||
Catch::Matchers::WithinRel(-0.288129855179f, 1e-6f));
|
||||
REQUIRE_THAT(mat2.Get(1, 0),
|
||||
Catch::Matchers::WithinRel(0.957591346325f, 1e-6f));
|
||||
|
||||
float sum = matrixSum(mat2);
|
||||
REQUIRE_THAT(sum, Catch::Matchers::WithinRel(1.0f, 1e-6f));
|
||||
}
|
||||
|
||||
SECTION("Normalized vectors sum to 1") {
|
||||
Matrix<9, 1> mat1{1, 2, 3, 4, 5, 6, 7, 8, 9};
|
||||
Matrix<9, 1> mat2;
|
||||
mat2 = mat1 / mat1.EuclideanNorm();
|
||||
float sum = matrixSum(mat2);
|
||||
REQUIRE_THAT(sum, Catch::Matchers::WithinRel(1.0f, 1e-6f));
|
||||
|
||||
Matrix<2, 3> mat3{1, 2, 3, 4, 5, 6};
|
||||
Matrix<2, 3> mat4{};
|
||||
mat4 = mat3 / mat3.EuclideanNorm();
|
||||
sum = matrixSum(mat4);
|
||||
REQUIRE_THAT(sum, Catch::Matchers::WithinRel(1.0f, 1e-6f));
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Element Divide") {
|
||||
for (uint32_t i{0}; i < 10000; i++) {
|
||||
mat1.ElementDivide(mat2, mat3);
|
||||
TEST_CASE("QR Decompositions", "Matrix") {
|
||||
SECTION("2x2 QRDecomposition") {
|
||||
Matrix<2, 2> A{1.0f, 2.0f, 3.0f, 4.0f};
|
||||
Matrix<2, 2> Q{}, R{};
|
||||
A.QRDecomposition(Q, R);
|
||||
|
||||
// Check that Q * R ≈ A
|
||||
Matrix<2, 2> QR{};
|
||||
Q.Mult(R, QR);
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 2; ++j) {
|
||||
REQUIRE_THAT(QR[i][j], Catch::Matchers::WithinRel(A[i][j], 1e-4f));
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Minor Matrix") {
|
||||
// what about matrices of 0,0 or 1,1?
|
||||
// minor matrix for 2x2 matrix
|
||||
Matrix<49, 49> minorMat1{};
|
||||
for (uint32_t i{0}; i < 10000; i++) {
|
||||
mat1.MinorMatrix(minorMat1, 0, 0);
|
||||
// Check that Q is orthonormal: Qᵀ * Q ≈ I
|
||||
Matrix<2, 2> Qt = Q.Transpose();
|
||||
Matrix<2, 2> QtQ{};
|
||||
Qt.Mult(Q, QtQ);
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 2; ++j) {
|
||||
if (i == j)
|
||||
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinRel(1.0f, 1e-4f));
|
||||
else
|
||||
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinAbs(0.0f, 1e-4f));
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Determinant") {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
float det1 = mat4.Det();
|
||||
// Optional: R should be upper triangular
|
||||
REQUIRE(std::fabs(R[1][0]) < 1e-4f);
|
||||
|
||||
// check that all Q values are correct
|
||||
REQUIRE_THAT(Q[0][0], Catch::Matchers::WithinRel(0.3162f, 1e-4f));
|
||||
REQUIRE_THAT(Q[0][1], Catch::Matchers::WithinRel(0.94868f, 1e-4f));
|
||||
REQUIRE_THAT(Q[1][0], Catch::Matchers::WithinRel(0.94868f, 1e-4f));
|
||||
REQUIRE_THAT(Q[1][1], Catch::Matchers::WithinRel(-0.3162f, 1e-4f));
|
||||
|
||||
// check that all R values are correct
|
||||
REQUIRE_THAT(R[0][0], Catch::Matchers::WithinRel(3.16228f, 1e-4f));
|
||||
REQUIRE_THAT(R[0][1], Catch::Matchers::WithinRel(4.42719f, 1e-4f));
|
||||
REQUIRE_THAT(R[1][0], Catch::Matchers::WithinRel(0.0f, 1e-4f));
|
||||
REQUIRE_THAT(R[1][1], Catch::Matchers::WithinRel(0.63246f, 1e-4f));
|
||||
}
|
||||
|
||||
SECTION("3x3 QRDecomposition") {
|
||||
// this symmetrix tridiagonal matrix is well behaved for testing
|
||||
Matrix<3, 3> A{1, 2, 3, 4, 5, 6, 7, 8, 9};
|
||||
|
||||
Matrix<3, 3> Q{}, R{};
|
||||
A.QRDecomposition(Q, R);
|
||||
|
||||
// Check that Q * R ≈ A
|
||||
Matrix<3, 3> QR{};
|
||||
QR = Q * R;
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
for (int j = 0; j < 3; ++j) {
|
||||
REQUIRE_THAT(QR[i][j], Catch::Matchers::WithinRel(A[i][j], 1e-4f));
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Matrix of Minors") {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat4.MatrixOfMinors(mat5);
|
||||
// Check that Qᵀ * Q ≈ I
|
||||
// Since the rank of this matrix is 2, only the top left 2x2 sub-matrix will
|
||||
// equal I.
|
||||
Matrix<3, 3> Qt = Q.Transpose();
|
||||
Matrix<3, 3> QtQ{};
|
||||
QtQ = Qt * Q;
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 2; ++j) {
|
||||
if (i == j)
|
||||
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinRel(1.0f, 1e-4f));
|
||||
else
|
||||
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinAbs(0.0f, 1e-4f));
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Invert") {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat4.Invert(mat5);
|
||||
// Optional: Check R is upper triangular
|
||||
for (int i = 1; i < 3; ++i) {
|
||||
for (int j = 0; j < i; ++j) {
|
||||
REQUIRE(std::fabs(R[i][j]) < 1e-4f);
|
||||
}
|
||||
};
|
||||
|
||||
SECTION("Transpose") {
|
||||
for (uint32_t i{0}; i < 10000; i++) {
|
||||
mat1.Transpose(mat3);
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Normalize") {
|
||||
for (uint32_t i{0}; i < 10000; i++) {
|
||||
mat1.Normalize(mat3);
|
||||
SECTION("4x2 QRDecomposition") {
|
||||
// A simple 4x2 matrix
|
||||
Matrix<4, 2> A{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f};
|
||||
|
||||
Matrix<4, 2> Q{};
|
||||
Matrix<2, 2> R{};
|
||||
A.QRDecomposition(Q, R);
|
||||
|
||||
// Check that Q * R ≈ A
|
||||
Matrix<4, 2> QR{};
|
||||
Q.Mult(R, QR);
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
for (int j = 0; j < 2; ++j) {
|
||||
REQUIRE_THAT(QR[i][j], Catch::Matchers::WithinRel(A[i][j], 1e-4f));
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("GET ROW") {
|
||||
Matrix<1, 50> mat1Rows{};
|
||||
for (uint32_t i{0}; i < 1000000; i++) {
|
||||
mat1.GetRow(0, mat1Rows);
|
||||
// Check that Qᵀ * Q ≈ I₂
|
||||
Matrix<2, 4> Qt = Q.Transpose();
|
||||
Matrix<2, 2> QtQ{};
|
||||
Qt.Mult(Q, QtQ);
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 2; ++j) {
|
||||
if (i == j)
|
||||
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinRel(1.0f, 1e-4f));
|
||||
else
|
||||
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinAbs(0.0f, 1e-4f));
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("GET COLUMN") {
|
||||
Matrix<50, 1> mat1Columns{};
|
||||
for (uint32_t i{0}; i < 1000000; i++) {
|
||||
mat1.GetColumn(0, mat1Columns);
|
||||
// Check R is upper triangular (i > j ⇒ R[i][j] ≈ 0)
|
||||
for (int i = 1; i < 2; ++i) {
|
||||
for (int j = 0; j < i; ++j) {
|
||||
REQUIRE(std::fabs(R[i][j]) < 1e-4f);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Eigenvalues and Vectors", "Matrix") {
|
||||
SECTION("2x2 Eigen") {
|
||||
Matrix<2, 2> A{1.0f, 2.0f, 3.0f, 4.0f};
|
||||
Matrix<2, 2> vectors{};
|
||||
Matrix<2, 1> values{};
|
||||
|
||||
A.EigenQR(vectors, values, 1000000, 1e-20f);
|
||||
|
||||
REQUIRE_THAT(vectors[0][0], Catch::Matchers::WithinRel(0.41597f, 1e-4f));
|
||||
REQUIRE_THAT(vectors[1][0], Catch::Matchers::WithinRel(0.90938f, 1e-4f));
|
||||
REQUIRE_THAT(values[0][0], Catch::Matchers::WithinRel(5.372282f, 1e-4f));
|
||||
REQUIRE_THAT(values[1][0], Catch::Matchers::WithinRel(-0.372281f, 1e-4f));
|
||||
}
|
||||
|
||||
SECTION("3x3 Rank Defficient Eigen") {
|
||||
SKIP("Skipping this because QR decomposition isn't ready for it");
|
||||
// this symmetrix tridiagonal matrix is well behaved for testing
|
||||
Matrix<3, 3> A{1, 2, 3, 4, 5, 6, 7, 8, 9};
|
||||
|
||||
Matrix<3, 3> vectors{};
|
||||
Matrix<3, 1> values{};
|
||||
A.EigenQR(vectors, values, 1000000, 1e-8f);
|
||||
|
||||
std::string strBuf1 = "";
|
||||
vectors.ToString(strBuf1);
|
||||
std::cout << "Vectors:\n" << strBuf1 << std::endl;
|
||||
strBuf1 = "";
|
||||
values.ToString(strBuf1);
|
||||
std::cout << "Values:\n" << strBuf1 << std::endl;
|
||||
|
||||
REQUIRE_THAT(vectors[0][0], Catch::Matchers::WithinRel(0.23197f, 1e-4f));
|
||||
REQUIRE_THAT(vectors[1][0], Catch::Matchers::WithinRel(0.525322f, 1e-4f));
|
||||
REQUIRE_THAT(vectors[2][0], Catch::Matchers::WithinRel(0.81867f, 1e-4f));
|
||||
REQUIRE_THAT(values[0][0], Catch::Matchers::WithinRel(-1.11684f, 1e-4f));
|
||||
REQUIRE_THAT(values[1][0], Catch::Matchers::WithinRel(0.0f, 1e-4f));
|
||||
REQUIRE_THAT(values[2][0], Catch::Matchers::WithinRel(16.1168f, 1e-4f));
|
||||
}
|
||||
}
|
||||
127
unit-tests/matrix-timing-tests.cpp
Normal file
127
unit-tests/matrix-timing-tests.cpp
Normal file
@@ -0,0 +1,127 @@
|
||||
// include the unit test framework first
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/matchers/catch_matchers_floating_point.hpp>
|
||||
|
||||
// include the module you're going to test next
|
||||
#include "Matrix.hpp"
|
||||
|
||||
// any other libraries
|
||||
#include <array>
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
|
||||
// basically re-run all of the matrix tests with huge matrices and time the
|
||||
// results.
|
||||
TEST_CASE("Timing Tests", "Matrix") {
|
||||
std::array<float, 50 * 50> arr1{};
|
||||
for (uint16_t i{0}; i < 50 * 50; i++) {
|
||||
arr1[i] = i;
|
||||
}
|
||||
std::array<float, 50 * 50> arr2{5, 6, 7, 8};
|
||||
for (uint16_t i{50 * 50}; i < 2 * 50 * 50; i++) {
|
||||
arr2[i] = i;
|
||||
}
|
||||
Matrix<50, 50> mat1{arr1};
|
||||
Matrix<50, 50> mat2{arr2};
|
||||
Matrix<50, 50> mat3{};
|
||||
|
||||
// A smaller matrix to use for really badly optimized operations
|
||||
Matrix<4, 4> mat4{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
|
||||
Matrix<4, 4> mat5{};
|
||||
|
||||
SECTION("Addition") {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat3 = mat1 + mat2;
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Subtraction") {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat3 = mat1 - mat2;
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Multiplication") {
|
||||
for (uint32_t i{0}; i < 1000; i++) {
|
||||
mat3 = mat1 * mat2;
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Scalar Multiplication") {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat3 = mat1 * 3;
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Element Multiply") {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat1.ElementMultiply(mat2, mat3);
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Element Divide") {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat1.ElementDivide(mat2, mat3);
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Minor Matrix") {
|
||||
// what about matrices of 0,0 or 1,1?
|
||||
// minor matrix for 2x2 matrix
|
||||
Matrix<49, 49> minorMat1{};
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat1.MinorMatrix(minorMat1, 0, 0);
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Determinant") {
|
||||
for (uint32_t i{0}; i < 1000000; i++) {
|
||||
float det1 = mat4.Det();
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Matrix of Minors") {
|
||||
for (uint32_t i{0}; i < 1000000; i++) {
|
||||
mat4.MatrixOfMinors(mat5);
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Invert") {
|
||||
for (uint32_t i{0}; i < 1000000; i++) {
|
||||
mat5 = mat4.Invert();
|
||||
}
|
||||
};
|
||||
|
||||
SECTION("Transpose") {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat3 = mat1.Transpose();
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Normalize") {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat3 = mat1 / mat1.EuclideanNorm();
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("GET ROW") {
|
||||
Matrix<1, 50> mat1Rows{};
|
||||
for (uint32_t i{0}; i < 100000000; i++) {
|
||||
mat1.GetRow(0, mat1Rows);
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("GET COLUMN") {
|
||||
Matrix<50, 1> mat1Columns{};
|
||||
for (uint32_t i{0}; i < 100000000; i++) {
|
||||
mat1.GetColumn(0, mat1Columns);
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("QR Decomposition") {
|
||||
Matrix<50, 50> Q, R{};
|
||||
for (uint32_t i{0}; i < 500; i++) {
|
||||
mat1.QRDecomposition(Q, R);
|
||||
}
|
||||
}
|
||||
}
|
||||
103
unit-tests/quaternion-tests.cpp
Normal file
103
unit-tests/quaternion-tests.cpp
Normal file
@@ -0,0 +1,103 @@
|
||||
// include the unit test framework first
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/matchers/catch_matchers_floating_point.hpp>
|
||||
|
||||
// include the module you're going to test next
|
||||
#include "Quaternion.h"
|
||||
|
||||
// any other libraries
|
||||
#include <array>
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
|
||||
TEST_CASE("Vector Math", "Vector")
|
||||
{
|
||||
Quaternion q1{1, 2, 3, 4};
|
||||
Quaternion q2{5, 6, 7, 8};
|
||||
|
||||
SECTION("Initialization")
|
||||
{
|
||||
// explicit initialization
|
||||
REQUIRE(q1.w == 1);
|
||||
REQUIRE(q1.v1 == 2);
|
||||
REQUIRE(q1.v2 == 3);
|
||||
REQUIRE(q1.v3 == 4);
|
||||
|
||||
// fill initialization
|
||||
Quaternion q3{0};
|
||||
REQUIRE(q3.w == 0);
|
||||
REQUIRE(q3.v1 == 0);
|
||||
REQUIRE(q3.v2 == 0);
|
||||
REQUIRE(q3.v3 == 0);
|
||||
|
||||
// copy initialization
|
||||
Quaternion q4{q1};
|
||||
REQUIRE(q4.w == 1);
|
||||
REQUIRE(q4.v1 == 2);
|
||||
REQUIRE(q4.v2 == 3);
|
||||
REQUIRE(q4.v3 == 4);
|
||||
|
||||
// matrix initialization
|
||||
Matrix<1, 4> m1{1, 2, 3, 4};
|
||||
Quaternion q5{m1};
|
||||
REQUIRE(q5.w == 1);
|
||||
REQUIRE(q5.v1 == 2);
|
||||
REQUIRE(q5.v2 == 3);
|
||||
REQUIRE(q5.v3 == 4);
|
||||
|
||||
// array initialization
|
||||
Quaternion q6{std::array<float, 4>{1, 2, 3, 4}};
|
||||
REQUIRE(q6.w == 1);
|
||||
REQUIRE(q6.v1 == 2);
|
||||
REQUIRE(q6.v2 == 3);
|
||||
REQUIRE(q6.v3 == 4);
|
||||
}
|
||||
|
||||
SECTION("Equals")
|
||||
{
|
||||
Quaternion q3{0, 0, 0, 0};
|
||||
q3 = q1;
|
||||
REQUIRE(q3.w == 1);
|
||||
REQUIRE(q3.v1 == 2);
|
||||
REQUIRE(q3.v2 == 3);
|
||||
REQUIRE(q3.v3 == 4);
|
||||
}
|
||||
|
||||
SECTION("Array access")
|
||||
{
|
||||
REQUIRE(q1[0] == 1);
|
||||
REQUIRE(q1[1] == 2);
|
||||
REQUIRE(q1[2] == 3);
|
||||
REQUIRE(q1[3] == 4);
|
||||
}
|
||||
|
||||
SECTION("Addition")
|
||||
{
|
||||
Quaternion q3 = q1 + q2;
|
||||
REQUIRE(q3.w == 6);
|
||||
REQUIRE(q3.v1 == 8);
|
||||
REQUIRE(q3.v2 == 10);
|
||||
REQUIRE(q3.v3 == 12);
|
||||
}
|
||||
|
||||
SECTION("Multiplication")
|
||||
{
|
||||
Quaternion q3;
|
||||
q1.Q_Mult(q2, q3);
|
||||
REQUIRE(q3.w == -60);
|
||||
REQUIRE(q3.v1 == 12);
|
||||
REQUIRE(q3.v2 == 30);
|
||||
REQUIRE(q3.v3 == 24);
|
||||
}
|
||||
|
||||
SECTION("Rotation")
|
||||
{
|
||||
Quaternion q3{Quaternion::FromAngleAndAxis(M_PI / 2, Matrix<1, 3>{0, 0, 1})};
|
||||
Quaternion q4{0, 1, 0, 0};
|
||||
Quaternion q5;
|
||||
q3.Rotate(q4, q5);
|
||||
REQUIRE_THAT(q5.v1, Catch::Matchers::WithinRel(0.0f, 1e-6f));
|
||||
REQUIRE_THAT(q5.v2, Catch::Matchers::WithinRel(1.0f, 1e-6f));
|
||||
REQUIRE_THAT(q5.v3, Catch::Matchers::WithinRel(0.0f, 1e-6f));
|
||||
}
|
||||
}
|
||||
@@ -1,7 +0,0 @@
|
||||
# be in the root folder of this project when you run this
|
||||
cd build/
|
||||
ninja matrix-tests
|
||||
echo "Running tests. This will take a while."
|
||||
./unit-tests/matrix-tests -n "Timing Tests" -d yes > ../unit-tests/matrix-test-timings-temp.txt
|
||||
cd ../unit-tests/
|
||||
python3 test-timing-post-process.py
|
||||
36
unit-tests/timing-results/matrix-timing-tests.txt
Normal file
36
unit-tests/timing-results/matrix-timing-tests.txt
Normal file
@@ -0,0 +1,36 @@
|
||||
Running matrix-timing-tests with timing
|
||||
Randomness seeded to: 3567651885
|
||||
1.857 s: Addition
|
||||
1.857 s: Timing Tests
|
||||
1.788 s: Subtraction
|
||||
1.788 s: Timing Tests
|
||||
1.929 s: Multiplication
|
||||
1.929 s: Timing Tests
|
||||
1.268 s: Scalar Multiplication
|
||||
1.268 s: Timing Tests
|
||||
1.798 s: Element Multiply
|
||||
1.798 s: Timing Tests
|
||||
1.802 s: Element Divide
|
||||
1.803 s: Timing Tests
|
||||
1.553 s: Minor Matrix
|
||||
1.554 s: Timing Tests
|
||||
1.009 s: Determinant
|
||||
1.009 s: Timing Tests
|
||||
4.076 s: Matrix of Minors
|
||||
4.076 s: Timing Tests
|
||||
1.066 s: Invert
|
||||
1.066 s: Timing Tests
|
||||
1.246 s: Transpose
|
||||
1.246 s: Timing Tests
|
||||
2.284 s: Normalize
|
||||
2.284 s: Timing Tests
|
||||
0.606 s: GET ROW
|
||||
0.606 s: Timing Tests
|
||||
24.629 s: GET COLUMN
|
||||
24.630 s: Timing Tests
|
||||
3.064 s: QR Decomposition
|
||||
3.064 s: Timing Tests
|
||||
===============================================================================
|
||||
test cases: 1 | 1 passed
|
||||
assertions: - none -
|
||||
|
||||
45
unit-tests/vector-tests.cpp
Normal file
45
unit-tests/vector-tests.cpp
Normal file
@@ -0,0 +1,45 @@
|
||||
// include the unit test framework first
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <catch2/matchers/catch_matchers_floating_point.hpp>
|
||||
|
||||
// include the module you're going to test next
|
||||
#include "Vector3D.hpp"
|
||||
#include "Matrix.hpp"
|
||||
|
||||
// any other libraries
|
||||
#include <array>
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
|
||||
TEST_CASE("Vector Math", "Vector")
|
||||
{
|
||||
V3D<float> v1{1, 2, 3};
|
||||
V3D<float> v2{4, 5, 6};
|
||||
V3D<float> v3{};
|
||||
|
||||
SECTION("Initialization")
|
||||
{
|
||||
// list initialization
|
||||
REQUIRE(v1.x == 1);
|
||||
REQUIRE(v1.y == 2);
|
||||
REQUIRE(v1.z == 3);
|
||||
|
||||
// copy initialization
|
||||
V3D<float> v4{v2};
|
||||
REQUIRE(v4.x == 4);
|
||||
REQUIRE(v4.y == 5);
|
||||
REQUIRE(v4.z == 6);
|
||||
|
||||
// empty initialization
|
||||
REQUIRE(v3.x == 0);
|
||||
REQUIRE(v3.y == 0);
|
||||
REQUIRE(v3.z == 0);
|
||||
|
||||
// matrix initialization
|
||||
Matrix<1, 3> mat1{v1.ToArray()};
|
||||
V3D<float> v5{mat1};
|
||||
REQUIRE(v5.x == v1.x);
|
||||
REQUIRE(v5.y == v1.y);
|
||||
REQUIRE(v5.z == v1.z);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user