Compare commits
22 Commits
74c1738a16
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
| 48b016d8b7 | |||
| 8e4595f2ef | |||
| 99c0d3ed70 | |||
| 80c4ebfece | |||
| 8b6f1de822 | |||
| 719fc4d28a | |||
| 2a7eb93ebe | |||
| c099dfe760 | |||
| d84664b567 | |||
| 1091bbda32 | |||
| bec70facb2 | |||
| 75edad3d0a | |||
| 64820553c7 | |||
| 60a2b12b5f | |||
| 37556c7c81 | |||
| 6fdab5be30 | |||
| d07ac43f7b | |||
| 74afbfeab8 | |||
| 1715d2b46c | |||
| 296f233b28 | |||
| 32c2a5cef2 | |||
| 54d9699df8 |
@@ -3,8 +3,6 @@ name: Merge-Checker
|
||||
on:
|
||||
pull_request:
|
||||
branches: ["**"]
|
||||
paths-ignore:
|
||||
- 'unit-tests/timing-results/**'
|
||||
|
||||
jobs:
|
||||
build_and_test:
|
||||
@@ -38,46 +36,67 @@ jobs:
|
||||
echo "Warning: $test_exec not found or not executable"
|
||||
fi
|
||||
done
|
||||
|
||||
- name: Run matrix-timing-tests with per-test timing output and save results
|
||||
- name: Run matrix-timing-tests
|
||||
run: |
|
||||
mkdir -p unit-tests/timing-results
|
||||
if [ -x build/unit-tests/matrix-timing-tests ]; then
|
||||
echo "Running matrix-timing-tests with timing"
|
||||
/usr/bin/time -v build/unit-tests/matrix-timing-tests -d yes &> unit-tests/timing-results/matrix-timing-tests.txt
|
||||
cat unit-tests/timing-results/matrix-timing-tests.txt
|
||||
else
|
||||
echo "matrix-timing-tests executable not found or not executable"
|
||||
exit 1
|
||||
fi
|
||||
- name: Commit and push timing results
|
||||
if: github.event.pull_request.head.repo.full_name == github.repository
|
||||
|
||||
- name: Compare timing results
|
||||
id: check_diff
|
||||
run: |
|
||||
git config --global user.name "ci-bot"
|
||||
git config --global user.email "ci-bot@local"
|
||||
git show origin/${{ github.event.pull_request.head.ref }}:unit-tests/timing-results/matrix-timing-tests.txt > old.txt || echo "" > old.txt
|
||||
cp unit-tests/timing-results/matrix-timing-tests.txt new.txt
|
||||
|
||||
BRANCH_NAME="${{ github.event.pull_request.head.ref }}"
|
||||
echo "Comparing timing results for changes ≥ 0.1s (ignoring 'Timing Tests' lines)..."
|
||||
|
||||
echo "Checking if last commit was a timing update"
|
||||
LAST_COMMIT_MSG=$(git log -1 --pretty=%B)
|
||||
changed=0
|
||||
|
||||
if echo "$LAST_COMMIT_MSG" | grep -q "Update matrix-timing-tests timings"; then
|
||||
echo "Last commit was a timing update, skipping commit."
|
||||
exit 0
|
||||
awk -v changed_ref=/tmp/timings_changed.flag '
|
||||
BEGIN {
|
||||
change_threshold = 0.1
|
||||
}
|
||||
FILENAME == "old.txt" && /^[0-9]+\.[0-9]+ s: / {
|
||||
label = substr($0, index($0, ":") + 2)
|
||||
if (label != "Timing Tests") {
|
||||
label_times[label] = $1
|
||||
}
|
||||
}
|
||||
FILENAME == "new.txt" && /^[0-9]+\.[0-9]+ s: / {
|
||||
new_time = $1
|
||||
label = substr($0, index($0, ":") + 2)
|
||||
if (label == "Timing Tests") next
|
||||
|
||||
old_time = label_times[label]
|
||||
delta = new_time - old_time
|
||||
if (delta < 0) delta = -delta
|
||||
|
||||
if (old_time != "" && delta >= change_threshold) {
|
||||
printf "⚠️ %.3f s → %.3f s: %s (Δ=%.3f s)\n", old_time, new_time, label, delta
|
||||
system("touch " changed_ref)
|
||||
} else if (old_time == "") {
|
||||
printf "🆕 New timing entry: %.3f s: %s\n", new_time, label
|
||||
system("touch " changed_ref)
|
||||
}
|
||||
}
|
||||
END {
|
||||
if (!system("test -f " changed_ref)) {
|
||||
exit 0
|
||||
} else {
|
||||
print "✅ Timings haven’t changed significantly (Δ < 0.1s)."
|
||||
exit 0
|
||||
}
|
||||
}
|
||||
' old.txt new.txt
|
||||
|
||||
if [ -f /tmp/timings_changed.flag ]; then
|
||||
echo "timings_changed=true" >> $GITHUB_OUTPUT
|
||||
else
|
||||
echo "Last commit name was: {$LAST_COMMIT_MSG}"
|
||||
fi
|
||||
|
||||
echo "Checking out source branch $BRANCH_NAME"
|
||||
git stash
|
||||
git fetch origin "$BRANCH_NAME"
|
||||
git checkout -B "$BRANCH_NAME" "origin/$BRANCH_NAME"
|
||||
git stash pop
|
||||
|
||||
git add unit-tests/timing-results/matrix-timing-tests.txt
|
||||
|
||||
if git diff --quiet --cached; then
|
||||
echo "No changes to commit"
|
||||
else
|
||||
git commit -m "Update matrix-timing-tests timings [skip ci]"
|
||||
git push origin "$BRANCH_NAME"
|
||||
fi
|
||||
echo "timings_changed=false" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
6
.vscode/settings.json
vendored
6
.vscode/settings.json
vendored
@@ -75,5 +75,9 @@
|
||||
},
|
||||
"clangd.enable": true,
|
||||
"C_Cpp.dimInactiveRegions": false,
|
||||
"editor.defaultFormatter": "xaver.clang-format"
|
||||
"editor.defaultFormatter": "xaver.clang-format",
|
||||
"clangd.inactiveRegions.useBackgroundHighlight": false,
|
||||
"clangd.arguments": [
|
||||
"--compile-commands-dir=${workspaceFolder}/build"
|
||||
],
|
||||
}
|
||||
@@ -6,7 +6,9 @@ add_subdirectory(unit-tests)
|
||||
|
||||
set(CMAKE_CXX_STANDARD 11)
|
||||
|
||||
add_compile_options(-fdiagnostics-color=always -Wall -Wextra -Wpedantic)
|
||||
add_compile_options(-Wall -Wextra -Wpedantic)
|
||||
add_compile_options (-fdiagnostics-color=always)
|
||||
set(CMAKE_COLOR_DIAGNOSTICS ON)
|
||||
|
||||
include(FetchContent)
|
||||
|
||||
|
||||
11
README.md
11
README.md
@@ -1,3 +1,12 @@
|
||||
# Introduction
|
||||
This matrix math library is focused on embedded development and avoids any heap memory allocation unless you explicitly ask for it.
|
||||
It uses templates to pre-allocate matrices on the stack.
|
||||
It uses templates to pre-allocate matrices on the stack.
|
||||
|
||||
# Building
|
||||
1. Initialize the repositiory with the command:
|
||||
```bash
|
||||
cmake -S . -B build -G Ninja
|
||||
```
|
||||
|
||||
2. Go into the build folder and run `ninja`
|
||||
3. That's it. You can test out the build by running `./unit-tests/matrix-tests`
|
||||
453
src/Matrix.cpp
453
src/Matrix.cpp
@@ -1,3 +1,10 @@
|
||||
// This #ifndef section makes clangd happy so that it can properly do type hints
|
||||
// in this file
|
||||
#ifndef MATRIX_H_
|
||||
#define MATRIX_H_
|
||||
#include "Matrix.hpp"
|
||||
#endif
|
||||
|
||||
#ifdef MATRIX_H_ // since the .cpp file has to be included by the .hpp file this
|
||||
// will evaluate to true
|
||||
#include "Matrix.hpp"
|
||||
@@ -5,29 +12,28 @@
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstdlib>
|
||||
#include <type_traits>
|
||||
#include <cstring>
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns>::Matrix(float value)
|
||||
{
|
||||
this->Fill(value);
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns>::Matrix(const std::array<float, rows * columns> &array)
|
||||
{
|
||||
Matrix<rows, columns>::Matrix(const std::array<float, rows * columns> &array) {
|
||||
this->setMatrixToArray(array);
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
template <typename... Args>
|
||||
Matrix<rows, columns>::Matrix(Args... args)
|
||||
{
|
||||
Matrix<rows, columns>::Matrix(Args... args) {
|
||||
constexpr uint16_t arraySize{static_cast<uint16_t>(rows) *
|
||||
static_cast<uint16_t>(columns)};
|
||||
|
||||
std::initializer_list<float> initList{static_cast<float>(args)...};
|
||||
// if there is only one value, we actually want to do a fill
|
||||
if (sizeof...(args) == 1) {
|
||||
this->Fill(*initList.begin());
|
||||
}
|
||||
static_assert(sizeof...(args) == arraySize || sizeof...(args) == 1,
|
||||
"You did not provide the right amount of initializers for this "
|
||||
"matrix size");
|
||||
|
||||
// choose whichever buffer size is smaller for the copy length
|
||||
uint32_t minSize =
|
||||
std::min(arraySize, static_cast<uint16_t>(initList.size()));
|
||||
@@ -35,22 +41,19 @@ Matrix<rows, columns>::Matrix(Args... args)
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
void Matrix<rows, columns>::Identity()
|
||||
{
|
||||
this->Fill(0);
|
||||
for (uint8_t idx{0}; idx < rows; idx++)
|
||||
{
|
||||
this->matrix[idx * columns + idx] = 1;
|
||||
Matrix<rows, columns> Matrix<rows, columns>::Identity() {
|
||||
Matrix<rows, columns> identityMatrix{0};
|
||||
uint32_t minDimension = std::min(rows, columns);
|
||||
for (uint8_t idx{0}; idx < minDimension; idx++) {
|
||||
identityMatrix[idx][idx] = 1;
|
||||
}
|
||||
return identityMatrix;
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns>::Matrix(const Matrix<rows, columns> &other)
|
||||
{
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
|
||||
{
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
|
||||
{
|
||||
Matrix<rows, columns>::Matrix(const Matrix<rows, columns> &other) {
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
||||
this->matrix[row_idx * columns + column_idx] =
|
||||
other.Get(row_idx, column_idx);
|
||||
}
|
||||
@@ -59,21 +62,15 @@ Matrix<rows, columns>::Matrix(const Matrix<rows, columns> &other)
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
void Matrix<rows, columns>::setMatrixToArray(
|
||||
const std::array<float, rows * columns> &array)
|
||||
{
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
|
||||
{
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
|
||||
{
|
||||
const std::array<float, rows * columns> &array) {
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
||||
uint16_t array_idx =
|
||||
static_cast<uint16_t>(row_idx) * static_cast<uint16_t>(columns) +
|
||||
static_cast<uint16_t>(column_idx);
|
||||
if (array_idx < array.size())
|
||||
{
|
||||
if (array_idx < array.size()) {
|
||||
this->matrix[row_idx * columns + column_idx] = array[array_idx];
|
||||
}
|
||||
else
|
||||
{
|
||||
} else {
|
||||
this->matrix[row_idx * columns + column_idx] = 0;
|
||||
}
|
||||
}
|
||||
@@ -83,12 +80,9 @@ void Matrix<rows, columns>::setMatrixToArray(
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns> &
|
||||
Matrix<rows, columns>::Add(const Matrix<rows, columns> &other,
|
||||
Matrix<rows, columns> &result) const
|
||||
{
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
|
||||
{
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
|
||||
{
|
||||
Matrix<rows, columns> &result) const {
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
||||
result[row_idx][column_idx] =
|
||||
this->Get(row_idx, column_idx) + other.Get(row_idx, column_idx);
|
||||
}
|
||||
@@ -99,12 +93,9 @@ Matrix<rows, columns>::Add(const Matrix<rows, columns> &other,
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns> &
|
||||
Matrix<rows, columns>::Sub(const Matrix<rows, columns> &other,
|
||||
Matrix<rows, columns> &result) const
|
||||
{
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
|
||||
{
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
|
||||
{
|
||||
Matrix<rows, columns> &result) const {
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
||||
result[row_idx][column_idx] =
|
||||
this->Get(row_idx, column_idx) - other.Get(row_idx, column_idx);
|
||||
}
|
||||
@@ -117,18 +108,15 @@ template <uint8_t rows, uint8_t columns>
|
||||
template <uint8_t other_columns>
|
||||
Matrix<rows, other_columns> &
|
||||
Matrix<rows, columns>::Mult(const Matrix<columns, other_columns> &other,
|
||||
Matrix<rows, other_columns> &result) const
|
||||
{
|
||||
Matrix<rows, other_columns> &result) const {
|
||||
// allocate some buffers for all of our dot products
|
||||
Matrix<1, columns> this_row;
|
||||
Matrix<columns, 1> other_column;
|
||||
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
|
||||
{
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
||||
// get our row
|
||||
this->GetRow(row_idx, this_row);
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
|
||||
{
|
||||
for (uint8_t column_idx{0}; column_idx < other_columns; column_idx++) {
|
||||
// get the other matrix'ss column
|
||||
other.GetColumn(column_idx, other_column);
|
||||
|
||||
@@ -143,12 +131,9 @@ Matrix<rows, columns>::Mult(const Matrix<columns, other_columns> &other,
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns> &
|
||||
Matrix<rows, columns>::Mult(float scalar, Matrix<rows, columns> &result) const
|
||||
{
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
|
||||
{
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
|
||||
{
|
||||
Matrix<rows, columns>::Mult(float scalar, Matrix<rows, columns> &result) const {
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
||||
result[row_idx][column_idx] = this->Get(row_idx, column_idx) * scalar;
|
||||
}
|
||||
}
|
||||
@@ -157,9 +142,7 @@ Matrix<rows, columns>::Mult(float scalar, Matrix<rows, columns> &result) const
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns>
|
||||
Matrix<rows, columns>::Invert() const
|
||||
{
|
||||
Matrix<rows, columns> Matrix<rows, columns>::Invert() const {
|
||||
// since all matrix sizes have to be statically specified at compile time we
|
||||
// can do this
|
||||
static_assert(rows == columns,
|
||||
@@ -169,8 +152,7 @@ Matrix<rows, columns>::Invert() const
|
||||
// unfortunately we can't calculate this at compile time so we'll just reurn
|
||||
// zeros
|
||||
float determinant{this->Det()};
|
||||
if (determinant == 0)
|
||||
{
|
||||
if (determinant == 0) {
|
||||
// you can't invert a matrix with a negative determinant
|
||||
result.Fill(0);
|
||||
return result;
|
||||
@@ -195,14 +177,10 @@ Matrix<rows, columns>::Invert() const
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<columns, rows>
|
||||
Matrix<rows, columns>::Transpose() const
|
||||
{
|
||||
Matrix<columns, rows> Matrix<rows, columns>::Transpose() const {
|
||||
Matrix<columns, rows> result{};
|
||||
for (uint8_t column_idx{0}; column_idx < rows; column_idx++)
|
||||
{
|
||||
for (uint8_t row_idx{0}; row_idx < columns; row_idx++)
|
||||
{
|
||||
for (uint8_t column_idx{0}; column_idx < rows; column_idx++) {
|
||||
for (uint8_t row_idx{0}; row_idx < columns; row_idx++) {
|
||||
result[row_idx][column_idx] = this->Get(column_idx, row_idx);
|
||||
}
|
||||
}
|
||||
@@ -214,24 +192,19 @@ Matrix<rows, columns>::Transpose() const
|
||||
// the fastest way to calculate a 2x2 matrix determinant
|
||||
// template <>
|
||||
// inline float Matrix<0, 0>::Det() const { return 1e+6; }
|
||||
template <>
|
||||
inline float Matrix<1, 1>::Det() const { return this->matrix[0]; }
|
||||
template <>
|
||||
inline float Matrix<2, 2>::Det() const
|
||||
{
|
||||
template <> inline float Matrix<1, 1>::Det() const { return this->matrix[0]; }
|
||||
template <> inline float Matrix<2, 2>::Det() const {
|
||||
return this->matrix[0] * this->matrix[3] - this->matrix[1] * this->matrix[2];
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
float Matrix<rows, columns>::Det() const
|
||||
{
|
||||
float Matrix<rows, columns>::Det() const {
|
||||
static_assert(rows == columns,
|
||||
"You can't take the determinant of a non-square matrix.");
|
||||
|
||||
Matrix<rows - 1, columns - 1> MinorMatrix{};
|
||||
float determinant{0};
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
|
||||
{
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
||||
// for odd indices the sign is negative
|
||||
float sign = (column_idx % 2 == 0) ? 1 : -1;
|
||||
determinant += sign * this->matrix[column_idx] *
|
||||
@@ -244,12 +217,9 @@ float Matrix<rows, columns>::Det() const
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns> &
|
||||
Matrix<rows, columns>::ElementMultiply(const Matrix<rows, columns> &other,
|
||||
Matrix<rows, columns> &result) const
|
||||
{
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
|
||||
{
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
|
||||
{
|
||||
Matrix<rows, columns> &result) const {
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
||||
result[row_idx][column_idx] =
|
||||
this->Get(row_idx, column_idx) * other.Get(row_idx, column_idx);
|
||||
}
|
||||
@@ -261,12 +231,9 @@ Matrix<rows, columns>::ElementMultiply(const Matrix<rows, columns> &other,
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns> &
|
||||
Matrix<rows, columns>::ElementDivide(const Matrix<rows, columns> &other,
|
||||
Matrix<rows, columns> &result) const
|
||||
{
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
|
||||
{
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
|
||||
{
|
||||
Matrix<rows, columns> &result) const {
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
||||
result[row_idx][column_idx] =
|
||||
this->Get(row_idx, column_idx) / other.Get(row_idx, column_idx);
|
||||
}
|
||||
@@ -277,10 +244,8 @@ Matrix<rows, columns>::ElementDivide(const Matrix<rows, columns> &other,
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
float Matrix<rows, columns>::Get(uint8_t row_index,
|
||||
uint8_t column_index) const
|
||||
{
|
||||
if (row_index > rows - 1 || column_index > columns - 1)
|
||||
{
|
||||
uint8_t column_index) const {
|
||||
if (row_index > rows - 1 || column_index > columns - 1) {
|
||||
return 1e+10; // TODO: We should throw something here instead of failing
|
||||
// quietly
|
||||
}
|
||||
@@ -290,8 +255,7 @@ float Matrix<rows, columns>::Get(uint8_t row_index,
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<1, columns> &
|
||||
Matrix<rows, columns>::GetRow(uint8_t row_index,
|
||||
Matrix<1, columns> &row) const
|
||||
{
|
||||
Matrix<1, columns> &row) const {
|
||||
memcpy(&(row[0]), this->matrix.begin() + row_index * columns,
|
||||
columns * sizeof(float));
|
||||
|
||||
@@ -301,10 +265,8 @@ Matrix<rows, columns>::GetRow(uint8_t row_index,
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, 1> &
|
||||
Matrix<rows, columns>::GetColumn(uint8_t column_index,
|
||||
Matrix<rows, 1> &column) const
|
||||
{
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
|
||||
{
|
||||
Matrix<rows, 1> &column) const {
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
||||
column[row_idx][0] = this->Get(row_idx, column_index);
|
||||
}
|
||||
|
||||
@@ -312,17 +274,13 @@ Matrix<rows, columns>::GetColumn(uint8_t column_index,
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
void Matrix<rows, columns>::ToString(std::string &stringBuffer) const
|
||||
{
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
|
||||
{
|
||||
void Matrix<rows, columns>::ToString(std::string &stringBuffer) const {
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
||||
stringBuffer += "|";
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
|
||||
{
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
||||
stringBuffer +=
|
||||
std::to_string(this->matrix[row_idx * columns + column_idx]);
|
||||
if (column_idx != columns - 1)
|
||||
{
|
||||
if (column_idx != columns - 1) {
|
||||
stringBuffer += "\t";
|
||||
}
|
||||
}
|
||||
@@ -331,11 +289,14 @@ void Matrix<rows, columns>::ToString(std::string &stringBuffer) const
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
std::array<float, columns> &Matrix<rows, columns>::
|
||||
operator[](uint8_t row_index)
|
||||
{
|
||||
if (row_index > rows - 1)
|
||||
{
|
||||
const float *Matrix<rows, columns>::ToArray() const {
|
||||
return this->matrix.data();
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
std::array<float, columns> &
|
||||
Matrix<rows, columns>::operator[](uint8_t row_index) {
|
||||
if (row_index > rows - 1) {
|
||||
// TODO: We should throw something here instead of failing quietly.
|
||||
row_index = 0;
|
||||
}
|
||||
@@ -346,9 +307,8 @@ operator[](uint8_t row_index)
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns> &Matrix<rows, columns>::
|
||||
operator=(const Matrix<rows, columns> &other)
|
||||
{
|
||||
Matrix<rows, columns> &
|
||||
Matrix<rows, columns>::operator=(const Matrix<rows, columns> &other) {
|
||||
memcpy(this->matrix.begin(), other.matrix.begin(),
|
||||
rows * columns * sizeof(float));
|
||||
|
||||
@@ -357,18 +317,16 @@ operator=(const Matrix<rows, columns> &other)
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns> Matrix<rows, columns>::
|
||||
operator+(const Matrix<rows, columns> &other) const
|
||||
{
|
||||
Matrix<rows, columns>
|
||||
Matrix<rows, columns>::operator+(const Matrix<rows, columns> &other) const {
|
||||
Matrix<rows, columns> buffer{};
|
||||
this->Add(other, buffer);
|
||||
return buffer;
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns> Matrix<rows, columns>::
|
||||
operator-(const Matrix<rows, columns> &other) const
|
||||
{
|
||||
Matrix<rows, columns>
|
||||
Matrix<rows, columns>::operator-(const Matrix<rows, columns> &other) const {
|
||||
Matrix<rows, columns> buffer{};
|
||||
this->Sub(other, buffer);
|
||||
return buffer;
|
||||
@@ -376,30 +334,42 @@ operator-(const Matrix<rows, columns> &other) const
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
template <uint8_t other_columns>
|
||||
Matrix<rows, other_columns> Matrix<rows, columns>::
|
||||
operator*(const Matrix<columns, other_columns> &other) const
|
||||
{
|
||||
Matrix<rows, other_columns> Matrix<rows, columns>::operator*(
|
||||
const Matrix<columns, other_columns> &other) const {
|
||||
Matrix<rows, other_columns> buffer{};
|
||||
this->Mult(other, buffer);
|
||||
return buffer;
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns> Matrix<rows, columns>::operator*(float scalar) const
|
||||
{
|
||||
Matrix<rows, columns> Matrix<rows, columns>::operator*(float scalar) const {
|
||||
Matrix<rows, columns> buffer{};
|
||||
this->Mult(scalar, buffer);
|
||||
return buffer;
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns> Matrix<rows, columns>::operator/(float scalar) const {
|
||||
Matrix<rows, columns> buffer = *this;
|
||||
if (scalar == 0) {
|
||||
buffer.Fill(1e+10);
|
||||
return buffer;
|
||||
}
|
||||
|
||||
for (uint8_t row = 0; row < rows; row++) {
|
||||
for (uint8_t column = 0; column < columns; column++) {
|
||||
buffer[row][column] /= scalar;
|
||||
}
|
||||
}
|
||||
return buffer;
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
template <uint8_t vector_size>
|
||||
float Matrix<rows, columns>::DotProduct(const Matrix<1, vector_size> &vec1,
|
||||
const Matrix<1, vector_size> &vec2)
|
||||
{
|
||||
const Matrix<1, vector_size> &vec2) {
|
||||
float sum{0};
|
||||
for (uint8_t i{0}; i < vector_size; i++)
|
||||
{
|
||||
for (uint8_t i{0}; i < vector_size; i++) {
|
||||
sum += vec1.Get(0, i) * vec2.Get(0, i);
|
||||
}
|
||||
|
||||
@@ -409,11 +379,9 @@ float Matrix<rows, columns>::DotProduct(const Matrix<1, vector_size> &vec1,
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
template <uint8_t vector_size>
|
||||
float Matrix<rows, columns>::DotProduct(const Matrix<vector_size, 1> &vec1,
|
||||
const Matrix<vector_size, 1> &vec2)
|
||||
{
|
||||
const Matrix<vector_size, 1> &vec2) {
|
||||
float sum{0};
|
||||
for (uint8_t i{0}; i < vector_size; i++)
|
||||
{
|
||||
for (uint8_t i{0}; i < vector_size; i++) {
|
||||
sum += vec1.Get(i, 0) * vec2.Get(i, 0);
|
||||
}
|
||||
|
||||
@@ -421,12 +389,9 @@ float Matrix<rows, columns>::DotProduct(const Matrix<vector_size, 1> &vec1,
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
void Matrix<rows, columns>::Fill(float value)
|
||||
{
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
|
||||
{
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
|
||||
{
|
||||
void Matrix<rows, columns>::Fill(float value) {
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
||||
this->matrix[row_idx * columns + column_idx] = value;
|
||||
}
|
||||
}
|
||||
@@ -434,14 +399,11 @@ void Matrix<rows, columns>::Fill(float value)
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns> &
|
||||
Matrix<rows, columns>::MatrixOfMinors(Matrix<rows, columns> &result) const
|
||||
{
|
||||
Matrix<rows, columns>::MatrixOfMinors(Matrix<rows, columns> &result) const {
|
||||
Matrix<rows - 1, columns - 1> MinorMatrix{};
|
||||
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
|
||||
{
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
|
||||
{
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
||||
this->MinorMatrix(MinorMatrix, row_idx, column_idx);
|
||||
result[row_idx][column_idx] = MinorMatrix.Det();
|
||||
}
|
||||
@@ -453,20 +415,15 @@ Matrix<rows, columns>::MatrixOfMinors(Matrix<rows, columns> &result) const
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows - 1, columns - 1> &
|
||||
Matrix<rows, columns>::MinorMatrix(Matrix<rows - 1, columns - 1> &result,
|
||||
uint8_t row_idx, uint8_t column_idx) const
|
||||
{
|
||||
uint8_t row_idx, uint8_t column_idx) const {
|
||||
std::array<float, (rows - 1) * (columns - 1)> subArray{};
|
||||
uint16_t array_idx{0};
|
||||
for (uint8_t row_iter{0}; row_iter < rows; row_iter++)
|
||||
{
|
||||
if (row_iter == row_idx)
|
||||
{
|
||||
for (uint8_t row_iter{0}; row_iter < rows; row_iter++) {
|
||||
if (row_iter == row_idx) {
|
||||
continue;
|
||||
}
|
||||
for (uint8_t column_iter{0}; column_iter < columns; column_iter++)
|
||||
{
|
||||
if (column_iter == column_idx)
|
||||
{
|
||||
for (uint8_t column_iter{0}; column_iter < columns; column_iter++) {
|
||||
if (column_iter == column_idx) {
|
||||
continue;
|
||||
}
|
||||
subArray[array_idx] = this->Get(row_iter, column_iter);
|
||||
@@ -480,12 +437,9 @@ Matrix<rows, columns>::MinorMatrix(Matrix<rows - 1, columns - 1> &result,
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns> &
|
||||
Matrix<rows, columns>::adjugate(Matrix<rows, columns> &result) const
|
||||
{
|
||||
for (uint8_t row_iter{0}; row_iter < rows; row_iter++)
|
||||
{
|
||||
for (uint8_t column_iter{0}; column_iter < columns; column_iter++)
|
||||
{
|
||||
Matrix<rows, columns>::adjugate(Matrix<rows, columns> &result) const {
|
||||
for (uint8_t row_iter{0}; row_iter < rows; row_iter++) {
|
||||
for (uint8_t column_iter{0}; column_iter < columns; column_iter++) {
|
||||
float sign = ((row_iter + 1) % 2) == 0 ? -1 : 1;
|
||||
sign *= ((column_iter + 1) % 2) == 0 ? -1 : 1;
|
||||
result[column_iter][row_iter] = this->Get(row_iter, column_iter) * sign;
|
||||
@@ -496,55 +450,34 @@ Matrix<rows, columns>::adjugate(Matrix<rows, columns> &result) const
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns> &
|
||||
Matrix<rows, columns>::Normalize(Matrix<rows, columns> &result) const
|
||||
{
|
||||
float Matrix<rows, columns>::EuclideanNorm() const {
|
||||
|
||||
float sum{0};
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
|
||||
{
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
|
||||
{
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
||||
float val{this->Get(row_idx, column_idx)};
|
||||
sum += val * val;
|
||||
}
|
||||
}
|
||||
|
||||
if (sum == 0)
|
||||
{
|
||||
// this wouldn't do anything anyways
|
||||
result.Fill(1e+6);
|
||||
return result;
|
||||
}
|
||||
|
||||
sum = sqrt(sum);
|
||||
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
|
||||
{
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
|
||||
{
|
||||
result[row_idx][column_idx] = this->Get(row_idx, column_idx) / sum;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
return sqrt(sum);
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
template <uint8_t sub_rows, uint8_t sub_columns, uint8_t row_offset, uint8_t column_offset>
|
||||
Matrix<sub_rows, sub_columns> Matrix<rows, columns>::SubMatrix() const
|
||||
{
|
||||
template <uint8_t sub_rows, uint8_t sub_columns, uint8_t row_offset,
|
||||
uint8_t column_offset>
|
||||
Matrix<sub_rows, sub_columns> Matrix<rows, columns>::SubMatrix() const {
|
||||
// static assert that sub_rows + row_offset <= rows
|
||||
// static assert that sub_columns + column_offset <= columns
|
||||
static_assert(sub_rows + row_offset <= rows,
|
||||
"The submatrix you're trying to get is out of bounds (rows)");
|
||||
static_assert(sub_columns + column_offset <= columns,
|
||||
"The submatrix you're trying to get is out of bounds (columns)");
|
||||
static_assert(
|
||||
sub_columns + column_offset <= columns,
|
||||
"The submatrix you're trying to get is out of bounds (columns)");
|
||||
|
||||
Matrix<sub_rows, sub_columns> buffer{};
|
||||
for (uint8_t row_idx{0}; row_idx < sub_rows; row_idx++)
|
||||
{
|
||||
for (uint8_t column_idx{0}; column_idx < sub_columns; column_idx++)
|
||||
{
|
||||
for (uint8_t row_idx{0}; row_idx < sub_rows; row_idx++) {
|
||||
for (uint8_t column_idx{0}; column_idx < sub_columns; column_idx++) {
|
||||
buffer[row_idx][column_idx] =
|
||||
this->Get(row_idx + row_offset, column_idx + column_offset);
|
||||
}
|
||||
@@ -553,21 +486,121 @@ Matrix<sub_rows, sub_columns> Matrix<rows, columns>::SubMatrix() const
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
template <uint8_t sub_rows, uint8_t sub_columns, uint8_t row_offset, uint8_t column_offset>
|
||||
void Matrix<rows, columns>::SetSubMatrix(const Matrix<sub_rows, sub_columns> &sub_matrix)
|
||||
{
|
||||
static_assert(sub_rows + row_offset <= rows,
|
||||
"The submatrix you're trying to set is out of bounds (rows)");
|
||||
static_assert(sub_columns + column_offset <= columns,
|
||||
"The submatrix you're trying to set is out of bounds (columns)");
|
||||
template <uint8_t sub_rows, uint8_t sub_columns>
|
||||
void Matrix<rows, columns>::SetSubMatrix(
|
||||
uint8_t rowOffset, uint8_t columnOffset,
|
||||
const Matrix<sub_rows, sub_columns> &sub_matrix) {
|
||||
int16_t adjustedSubRows = sub_rows;
|
||||
int16_t adjustedSubColumns = sub_columns;
|
||||
int16_t adjustedRowOffset = rowOffset;
|
||||
int16_t adjustedColumnOffset = columnOffset;
|
||||
|
||||
for (uint8_t row_idx{0}; row_idx < sub_rows; row_idx++)
|
||||
{
|
||||
for (uint8_t column_idx{0}; column_idx < sub_columns; column_idx++)
|
||||
{
|
||||
this->matrix[(row_idx + row_offset) * columns + column_idx + column_offset] = sub_matrix.Get(row_idx, column_idx);
|
||||
// a bunch of safety checks to make sure we don't overflow the matrix
|
||||
if (sub_rows > rows) {
|
||||
adjustedSubRows = rows;
|
||||
}
|
||||
if (sub_columns > columns) {
|
||||
adjustedSubColumns = columns;
|
||||
}
|
||||
|
||||
if (adjustedSubRows + adjustedRowOffset >= rows) {
|
||||
adjustedRowOffset =
|
||||
std::max(0, static_cast<int16_t>(rows) - adjustedSubRows);
|
||||
}
|
||||
|
||||
if (adjustedSubColumns + adjustedColumnOffset >= columns) {
|
||||
adjustedColumnOffset =
|
||||
std::max(0, static_cast<int16_t>(columns) - adjustedSubColumns);
|
||||
}
|
||||
|
||||
for (uint8_t row_idx{0}; row_idx < adjustedSubRows; row_idx++) {
|
||||
for (uint8_t column_idx{0}; column_idx < adjustedSubColumns; column_idx++) {
|
||||
this->matrix[(row_idx + adjustedRowOffset) * columns + column_idx +
|
||||
adjustedColumnOffset] = sub_matrix.Get(row_idx, column_idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// QR decomposition: decomposes this matrix A into Q and R
|
||||
// Assumes square matrix
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
void Matrix<rows, columns>::QRDecomposition(Matrix<rows, columns> &Q,
|
||||
Matrix<columns, columns> &R) const {
|
||||
static_assert(columns <= rows, "QR decomposition requires columns <= rows");
|
||||
|
||||
Q.Fill(0);
|
||||
R.Fill(0);
|
||||
Matrix<rows, 1> a_col, e, u, Q_column_k{};
|
||||
Matrix<1, rows> a_T, e_T{};
|
||||
|
||||
for (uint8_t column = 0; column < columns; column++) {
|
||||
this->GetColumn(column, a_col);
|
||||
u = a_col;
|
||||
// -----------------------
|
||||
// ----- CALCULATE Q -----
|
||||
// -----------------------
|
||||
for (uint8_t k = 0; k <= column; k++) {
|
||||
Q.GetColumn(k, Q_column_k);
|
||||
Matrix<1, rows> Q_column_k_T = Q_column_k.Transpose();
|
||||
u = u - Q_column_k * (Q_column_k_T * a_col);
|
||||
}
|
||||
float norm = u.EuclideanNorm();
|
||||
if (norm > 1e-4) {
|
||||
u = u / norm;
|
||||
} else {
|
||||
u.Fill(0);
|
||||
}
|
||||
Q.SetSubMatrix(0, column, u);
|
||||
|
||||
// -----------------------
|
||||
// ----- CALCULATE R -----
|
||||
// -----------------------
|
||||
for (uint8_t k = 0; k <= column; k++) {
|
||||
Q.GetColumn(k, e);
|
||||
R[k][column] = (a_col.Transpose() * e).Get(0, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
void Matrix<rows, columns>::EigenQR(Matrix<rows, rows> &eigenVectors,
|
||||
Matrix<rows, 1> &eigenValues,
|
||||
uint32_t maxIterations,
|
||||
float tolerance) const {
|
||||
static_assert(rows > 1, "Matrix size must be > 1 for QR iteration");
|
||||
static_assert(rows == columns, "Matrix size must be square for QR iteration");
|
||||
|
||||
Matrix<rows, rows> Ak = *this; // Copy original matrix
|
||||
Matrix<rows, rows> QQ{Matrix<rows, rows>::Identity()};
|
||||
Matrix<rows, rows> shift{0};
|
||||
|
||||
for (uint32_t iter = 0; iter < maxIterations; ++iter) {
|
||||
Matrix<rows, rows> Q, R;
|
||||
|
||||
// // QR shift lets us "attack" the first diagonal to speed up the algorithm
|
||||
// shift = Matrix<rows, rows>::Identity() * Ak[rows - 1][rows - 1];
|
||||
(Ak - shift).QRDecomposition(Q, R);
|
||||
Ak = R * Q + shift;
|
||||
QQ = QQ * Q;
|
||||
|
||||
// Check convergence: off-diagonal norm
|
||||
float offDiagSum = 0.0f;
|
||||
for (uint32_t row = 1; row < rows; row++) {
|
||||
for (uint32_t column = 0; column < row; column++) {
|
||||
offDiagSum += fabs(Ak[row][column]);
|
||||
}
|
||||
}
|
||||
|
||||
if (offDiagSum < tolerance) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Diagonal elements are the eigenvalues
|
||||
for (uint8_t i = 0; i < rows; i++) {
|
||||
eigenValues[i][0] = Ak[i][i];
|
||||
}
|
||||
eigenVectors = QQ;
|
||||
}
|
||||
|
||||
#endif // MATRIX_H_
|
||||
@@ -1,5 +1,4 @@
|
||||
#ifndef MATRIX_H_
|
||||
#define MATRIX_H_
|
||||
#pragma once
|
||||
|
||||
#include <array>
|
||||
#include <cstdint>
|
||||
@@ -19,11 +18,6 @@ public:
|
||||
*/
|
||||
Matrix() = default;
|
||||
|
||||
/**
|
||||
* @brief Create a matrix but fill all of its entries with one value
|
||||
*/
|
||||
Matrix(float value);
|
||||
|
||||
/**
|
||||
* @brief Initialize a matrix with an array
|
||||
*/
|
||||
@@ -40,9 +34,9 @@ public:
|
||||
template <typename... Args> Matrix(Args... args);
|
||||
|
||||
/**
|
||||
* @brief set the matrix diagonals to 1 and all other values to 0
|
||||
* @brief Create an identity matrix
|
||||
*/
|
||||
void Identity();
|
||||
static Matrix<rows, columns> Identity();
|
||||
|
||||
/**
|
||||
* @brief Set all elements in this to value
|
||||
@@ -129,10 +123,11 @@ public:
|
||||
Matrix<columns, rows> Transpose() const;
|
||||
|
||||
/**
|
||||
* @brief reduce the matrix so the sum of its elements equal 1
|
||||
* @brief Returns the euclidean magnitude of the matrix. Also known as the L2
|
||||
* norm
|
||||
* @param result a buffer to store the result into
|
||||
*/
|
||||
Matrix<rows, columns> &Normalize(Matrix<rows, columns> &result) const;
|
||||
float EuclideanNorm() const;
|
||||
|
||||
/**
|
||||
* @brief Get a row from the matrix
|
||||
@@ -159,8 +154,16 @@ public:
|
||||
*/
|
||||
constexpr uint8_t GetColumnSize() { return columns; }
|
||||
|
||||
/**
|
||||
* @brief Write a string representation of the matrix into the buffer
|
||||
*/
|
||||
void ToString(std::string &stringBuffer) const;
|
||||
|
||||
/**
|
||||
* @brief Returns the internal representation of the matrix as an array
|
||||
*/
|
||||
const float *ToArray() const;
|
||||
|
||||
/**
|
||||
* @brief Get an element from the matrix
|
||||
* @param row the row index of the element
|
||||
@@ -193,13 +196,15 @@ public:
|
||||
|
||||
Matrix<rows, columns> operator*(float scalar) const;
|
||||
|
||||
Matrix<rows, columns> operator/(float scalar) const;
|
||||
|
||||
template <uint8_t sub_rows, uint8_t sub_columns, uint8_t row_offset,
|
||||
uint8_t column_offset>
|
||||
Matrix<sub_rows, sub_columns> SubMatrix() const;
|
||||
|
||||
template <uint8_t sub_rows, uint8_t sub_columns, uint8_t row_offset,
|
||||
uint8_t column_offset>
|
||||
void SetSubMatrix(const Matrix<sub_rows, sub_columns> &sub_matrix);
|
||||
template <uint8_t sub_rows, uint8_t sub_columns>
|
||||
void SetSubMatrix(uint8_t rowOffset, uint8_t columnOffset,
|
||||
const Matrix<sub_rows, sub_columns> &sub_matrix);
|
||||
|
||||
/**
|
||||
* @brief take the dot product of the two vectors
|
||||
@@ -216,6 +221,28 @@ public:
|
||||
return vec1.Get(0, 0) * vec2.Get(0, 0);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Performs QR decomposition on this matrix
|
||||
* @param Q a buffer that will contain Q after the function completes
|
||||
* @param R a buffer that will contain R after the function completes
|
||||
*/
|
||||
void QRDecomposition(Matrix<rows, columns> &Q,
|
||||
Matrix<columns, columns> &R) const;
|
||||
|
||||
/**
|
||||
* @brief Uses QR decomposition to efficiently calculate the eigenvectors
|
||||
* and values of this matrix
|
||||
* @param eigenVectors a buffer that will contain the eigenvectors fo this
|
||||
* matrix
|
||||
* @param eigenValues a buffer that will contain the eigenValues fo this
|
||||
* matrix
|
||||
* @param maxIterations the number of iterations to perform before giving
|
||||
* up on reaching the given tolerance
|
||||
* @param tolerance the level of accuracy to obtain before stopping.
|
||||
*/
|
||||
void EigenQR(Matrix<rows, rows> &eigenVectors, Matrix<rows, 1> &eigenValues,
|
||||
uint32_t maxIterations = 1000, float tolerance = 1e-6f) const;
|
||||
|
||||
protected:
|
||||
std::array<float, rows * columns> matrix;
|
||||
|
||||
@@ -225,6 +252,6 @@ private:
|
||||
void setMatrixToArray(const std::array<float, rows * columns> &array);
|
||||
};
|
||||
|
||||
#ifndef MATRIX_H_
|
||||
#include "Matrix.cpp"
|
||||
|
||||
#endif // MATRIX_H_
|
||||
@@ -6,115 +6,115 @@
|
||||
* @param angle The angle to rotate by
|
||||
* @param axis The axis to rotate around
|
||||
*/
|
||||
Quaternion Quaternion::FromAngleAndAxis(float angle, const Matrix<1, 3> &axis)
|
||||
{
|
||||
const float halfAngle = angle / 2;
|
||||
const float sinHalfAngle = sin(halfAngle);
|
||||
Matrix<1, 3> normalizedAxis{};
|
||||
axis.Normalize(normalizedAxis);
|
||||
return Quaternion{
|
||||
static_cast<float>(cos(halfAngle)),
|
||||
normalizedAxis.Get(0, 0) * sinHalfAngle,
|
||||
normalizedAxis.Get(0, 1) * sinHalfAngle,
|
||||
normalizedAxis.Get(0, 2) * sinHalfAngle};
|
||||
Quaternion Quaternion::FromAngleAndAxis(float angle, const Matrix<1, 3> &axis) {
|
||||
const float halfAngle = angle / 2;
|
||||
const float sinHalfAngle = sin(halfAngle);
|
||||
Matrix<1, 3> normalizedAxis = axis / axis.EuclideanNorm();
|
||||
return Quaternion{static_cast<float>(cos(halfAngle)),
|
||||
normalizedAxis.Get(0, 0) * sinHalfAngle,
|
||||
normalizedAxis.Get(0, 1) * sinHalfAngle,
|
||||
normalizedAxis.Get(0, 2) * sinHalfAngle};
|
||||
}
|
||||
|
||||
float Quaternion::operator[](uint8_t index) const
|
||||
{
|
||||
if (index < 4)
|
||||
{
|
||||
return this->matrix[index];
|
||||
}
|
||||
float Quaternion::operator[](uint8_t index) const {
|
||||
if (index < 4) {
|
||||
return this->matrix[index];
|
||||
}
|
||||
|
||||
// index out of bounds
|
||||
return 1e+6;
|
||||
// index out of bounds
|
||||
return 1e+6;
|
||||
}
|
||||
|
||||
void Quaternion::operator=(const Quaternion &other)
|
||||
{
|
||||
memcpy(&(this->matrix), &(other.matrix), 4 * sizeof(float));
|
||||
void Quaternion::operator=(const Quaternion &other) {
|
||||
memcpy(&(this->matrix), &(other.matrix), 4 * sizeof(float));
|
||||
}
|
||||
|
||||
Quaternion Quaternion::operator*(const Quaternion &other) const
|
||||
{
|
||||
Quaternion result{};
|
||||
this->Q_Mult(other, result);
|
||||
return result;
|
||||
Quaternion Quaternion::operator*(const Quaternion &other) const {
|
||||
Quaternion result{};
|
||||
this->Q_Mult(other, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
Quaternion Quaternion::operator*(float scalar) const
|
||||
{
|
||||
return Quaternion{this->w * scalar, this->v1 * scalar, this->v2 * scalar, this->v3 * scalar};
|
||||
Quaternion Quaternion::operator*(float scalar) const {
|
||||
return Quaternion{this->w * scalar, this->v1 * scalar, this->v2 * scalar,
|
||||
this->v3 * scalar};
|
||||
}
|
||||
|
||||
Quaternion Quaternion::operator+(const Quaternion &other) const
|
||||
{
|
||||
return Quaternion{this->w + other.w, this->v1 + other.v1, this->v2 + other.v2, this->v3 + other.v3};
|
||||
Quaternion Quaternion::operator+(const Quaternion &other) const {
|
||||
return Quaternion{this->w + other.w, this->v1 + other.v1, this->v2 + other.v2,
|
||||
this->v3 + other.v3};
|
||||
}
|
||||
|
||||
Quaternion &
|
||||
Quaternion::Q_Mult(const Quaternion &other, Quaternion &buffer) const
|
||||
{
|
||||
Quaternion &Quaternion::Q_Mult(const Quaternion &other,
|
||||
Quaternion &buffer) const {
|
||||
|
||||
// eq. 6
|
||||
buffer.w = (other.w * this->w - other.v1 * this->v1 - other.v2 * this->v2 - other.v3 * this->v3);
|
||||
buffer.v1 = (other.w * this->v1 + other.v1 * this->w - other.v2 * this->v3 + other.v3 * this->v2);
|
||||
buffer.v2 = (other.w * this->v2 + other.v1 * this->v3 + other.v2 * this->w - other.v3 * this->v1);
|
||||
buffer.v3 = (other.w * this->v3 - other.v1 * this->v2 + other.v2 * this->v1 + other.v3 * this->w);
|
||||
return buffer;
|
||||
// eq. 6
|
||||
buffer.w = (other.w * this->w - other.v1 * this->v1 - other.v2 * this->v2 -
|
||||
other.v3 * this->v3);
|
||||
buffer.v1 = (other.w * this->v1 + other.v1 * this->w - other.v2 * this->v3 +
|
||||
other.v3 * this->v2);
|
||||
buffer.v2 = (other.w * this->v2 + other.v1 * this->v3 + other.v2 * this->w -
|
||||
other.v3 * this->v1);
|
||||
buffer.v3 = (other.w * this->v3 - other.v1 * this->v2 + other.v2 * this->v1 +
|
||||
other.v3 * this->w);
|
||||
return buffer;
|
||||
}
|
||||
|
||||
Quaternion &Quaternion::Rotate(Quaternion &other, Quaternion &buffer) const
|
||||
{
|
||||
Quaternion prime{this->w, -this->v1, -this->v2, -this->v3};
|
||||
buffer.v1 = other.v1;
|
||||
buffer.v2 = other.v2;
|
||||
buffer.v3 = other.v3;
|
||||
buffer.w = 0;
|
||||
Quaternion &Quaternion::Rotate(Quaternion &other, Quaternion &buffer) const {
|
||||
Quaternion prime{this->w, -this->v1, -this->v2, -this->v3};
|
||||
buffer.v1 = other.v1;
|
||||
buffer.v2 = other.v2;
|
||||
buffer.v3 = other.v3;
|
||||
buffer.w = 0;
|
||||
|
||||
Quaternion temp{};
|
||||
this->Q_Mult(buffer, temp);
|
||||
temp.Q_Mult(prime, buffer);
|
||||
return buffer;
|
||||
Quaternion temp{};
|
||||
this->Q_Mult(buffer, temp);
|
||||
temp.Q_Mult(prime, buffer);
|
||||
return buffer;
|
||||
}
|
||||
|
||||
void Quaternion::Normalize()
|
||||
{
|
||||
float magnitude = sqrt(this->v1 * this->v1 + this->v2 * this->v2 + this->v3 * this->v3 + this->w * this->w);
|
||||
if (magnitude == 0)
|
||||
{
|
||||
return;
|
||||
}
|
||||
this->v1 /= magnitude;
|
||||
this->v2 /= magnitude;
|
||||
this->v3 /= magnitude;
|
||||
this->w /= magnitude;
|
||||
void Quaternion::Normalize() {
|
||||
float magnitude = sqrt(this->v1 * this->v1 + this->v2 * this->v2 +
|
||||
this->v3 * this->v3 + this->w * this->w);
|
||||
if (magnitude == 0) {
|
||||
return;
|
||||
}
|
||||
this->v1 /= magnitude;
|
||||
this->v2 /= magnitude;
|
||||
this->v3 /= magnitude;
|
||||
this->w /= magnitude;
|
||||
}
|
||||
|
||||
Matrix<3, 3> Quaternion::ToRotationMatrix() const
|
||||
{
|
||||
float xx = this->v1 * this->v1;
|
||||
float yy = this->v2 * this->v2;
|
||||
float zz = this->v3 * this->v3;
|
||||
Matrix<3, 3> rotationMatrix{
|
||||
1 - 2 * (yy - zz), 2 * (this->v1 * this->v2 - this->v3 * this->w), 2 * (this->v1 * this->v3 + this->v2 * this->w),
|
||||
2 * (this->v1 * this->v2 + this->v3 * this->w), 1 - 2 * (xx - zz), 2 * (this->v2 * this->v3 - this->v1 * this->w),
|
||||
2 * (this->v1 * this->v3 - this->v2 * this->w), 2 * (this->v2 * this->v3 + this->v1 * this->w), 1 - 2 * (xx - yy)};
|
||||
return rotationMatrix;
|
||||
Matrix<3, 3> Quaternion::ToRotationMatrix() const {
|
||||
float xx = this->v1 * this->v1;
|
||||
float yy = this->v2 * this->v2;
|
||||
float zz = this->v3 * this->v3;
|
||||
Matrix<3, 3> rotationMatrix{1 - 2 * (yy - zz),
|
||||
2 * (this->v1 * this->v2 - this->v3 * this->w),
|
||||
2 * (this->v1 * this->v3 + this->v2 * this->w),
|
||||
2 * (this->v1 * this->v2 + this->v3 * this->w),
|
||||
1 - 2 * (xx - zz),
|
||||
2 * (this->v2 * this->v3 - this->v1 * this->w),
|
||||
2 * (this->v1 * this->v3 - this->v2 * this->w),
|
||||
2 * (this->v2 * this->v3 + this->v1 * this->w),
|
||||
1 - 2 * (xx - yy)};
|
||||
return rotationMatrix;
|
||||
};
|
||||
|
||||
Matrix<3, 1> Quaternion::ToEulerAngle() const
|
||||
{
|
||||
float sqv1 = this->v1 * this->v1;
|
||||
float sqv2 = this->v2 * this->v2;
|
||||
float sqv3 = this->v3 * this->v3;
|
||||
float sqw = this->w * this->w;
|
||||
Matrix<3, 1> Quaternion::ToEulerAngle() const {
|
||||
float sqv1 = this->v1 * this->v1;
|
||||
float sqv2 = this->v2 * this->v2;
|
||||
float sqv3 = this->v3 * this->v3;
|
||||
float sqw = this->w * this->w;
|
||||
|
||||
Matrix<3, 1> eulerAngle;
|
||||
{
|
||||
atan2(2.0 * (this->v1 * this->v2 + this->v3 * this->w), (sqv1 - sqv2 - sqv3 + sqw));
|
||||
asin(-2.0 * (this->v1 * this->v3 - this->v2 * this->w) / (sqv1 + sqv2 + sqv3 + sqw));
|
||||
atan2(2.0 * (this->v2 * this->v3 + this->v1 * this->w), (-sqv1 - sqv2 + sqv3 + sqw));
|
||||
};
|
||||
return eulerAngle;
|
||||
Matrix<3, 1> eulerAngle;
|
||||
{
|
||||
atan2(2.0 * (this->v1 * this->v2 + this->v3 * this->w),
|
||||
(sqv1 - sqv2 - sqv3 + sqw));
|
||||
asin(-2.0 * (this->v1 * this->v3 - this->v2 * this->w) /
|
||||
(sqv1 + sqv2 + sqv3 + sqw));
|
||||
atan2(2.0 * (this->v2 * this->v3 + this->v1 * this->w),
|
||||
(-sqv1 - sqv2 + sqv3 + sqw));
|
||||
};
|
||||
return eulerAngle;
|
||||
}
|
||||
141
src/Quaternion.h
141
src/Quaternion.h
@@ -2,90 +2,89 @@
|
||||
#define QUATERNION_H_
|
||||
|
||||
#include "Matrix.hpp"
|
||||
class Quaternion : public Matrix<1, 4>
|
||||
{
|
||||
class Quaternion : public Matrix<1, 4> {
|
||||
public:
|
||||
Quaternion() : Matrix<1, 4>() {}
|
||||
Quaternion(float fillValue) : Matrix<1, 4>(fillValue) {}
|
||||
Quaternion(float w, float v1, float v2, float v3) : Matrix<1, 4>(w, v1, v2, v3) {}
|
||||
Quaternion(const Quaternion &q) : Matrix<1, 4>(q.w, q.v1, q.v2, q.v3) {}
|
||||
Quaternion(const Matrix<1, 4> &matrix) : Matrix<1, 4>(matrix) {}
|
||||
Quaternion(const std::array<float, 4> &array) : Matrix<1, 4>(array) {}
|
||||
Quaternion() : Matrix<1, 4>() {}
|
||||
Quaternion(float w, float v1, float v2, float v3)
|
||||
: Matrix<1, 4>(w, v1, v2, v3) {}
|
||||
Quaternion(const Quaternion &q) : Matrix<1, 4>(q.w, q.v1, q.v2, q.v3) {}
|
||||
Quaternion(const Matrix<1, 4> &matrix) : Matrix<1, 4>(matrix) {}
|
||||
Quaternion(const std::array<float, 4> &array) : Matrix<1, 4>(array) {}
|
||||
|
||||
/**
|
||||
* @brief Create a quaternion from an angle and axis
|
||||
* @param angle The angle to rotate by
|
||||
* @param axis The axis to rotate around
|
||||
*/
|
||||
static Quaternion FromAngleAndAxis(float angle, const Matrix<1, 3> &axis);
|
||||
/**
|
||||
* @brief Create a quaternion from an angle and axis
|
||||
* @param angle The angle to rotate by
|
||||
* @param axis The axis to rotate around
|
||||
*/
|
||||
static Quaternion FromAngleAndAxis(float angle, const Matrix<1, 3> &axis);
|
||||
|
||||
/**
|
||||
* @brief Access the elements of the quaternion
|
||||
* @param index The index of the element to access
|
||||
* @return The value of the element at the index
|
||||
*/
|
||||
float operator[](uint8_t index) const;
|
||||
/**
|
||||
* @brief Access the elements of the quaternion
|
||||
* @param index The index of the element to access
|
||||
* @return The value of the element at the index
|
||||
*/
|
||||
float operator[](uint8_t index) const;
|
||||
|
||||
/**
|
||||
* @brief Assign one quaternion to another
|
||||
*/
|
||||
void operator=(const Quaternion &other);
|
||||
/**
|
||||
* @brief Assign one quaternion to another
|
||||
*/
|
||||
void operator=(const Quaternion &other);
|
||||
|
||||
/**
|
||||
* @brief Do quaternion multiplication
|
||||
*/
|
||||
Quaternion operator*(const Quaternion &other) const;
|
||||
/**
|
||||
* @brief Do quaternion multiplication
|
||||
*/
|
||||
Quaternion operator*(const Quaternion &other) const;
|
||||
|
||||
/**
|
||||
* @brief Multiply the quaternion by a scalar
|
||||
*/
|
||||
Quaternion operator*(float scalar) const;
|
||||
/**
|
||||
* @brief Multiply the quaternion by a scalar
|
||||
*/
|
||||
Quaternion operator*(float scalar) const;
|
||||
|
||||
/**
|
||||
* @brief Add two quaternions together
|
||||
* @param other The quaternion to add to this one
|
||||
* @return The net quaternion
|
||||
*/
|
||||
Quaternion operator+(const Quaternion &other) const;
|
||||
/**
|
||||
* @brief Add two quaternions together
|
||||
* @param other The quaternion to add to this one
|
||||
* @return The net quaternion
|
||||
*/
|
||||
Quaternion operator+(const Quaternion &other) const;
|
||||
|
||||
/**
|
||||
* @brief Q_Mult a quaternion by another quaternion
|
||||
* @param other The quaternion to rotate by
|
||||
* @param buffer The buffer to store the result in
|
||||
* @return A reference to the buffer
|
||||
*/
|
||||
Quaternion &Q_Mult(const Quaternion &other, Quaternion &buffer) const;
|
||||
/**
|
||||
* @brief Q_Mult a quaternion by another quaternion
|
||||
* @param other The quaternion to rotate by
|
||||
* @param buffer The buffer to store the result in
|
||||
* @return A reference to the buffer
|
||||
*/
|
||||
Quaternion &Q_Mult(const Quaternion &other, Quaternion &buffer) const;
|
||||
|
||||
/**
|
||||
* @brief Rotate a quaternion by this quaternion
|
||||
* @param other The quaternion to rotate
|
||||
* @param buffer The buffer to store the result in
|
||||
*
|
||||
*/
|
||||
Quaternion &Rotate(Quaternion &other, Quaternion &buffer) const;
|
||||
/**
|
||||
* @brief Rotate a quaternion by this quaternion
|
||||
* @param other The quaternion to rotate
|
||||
* @param buffer The buffer to store the result in
|
||||
*
|
||||
*/
|
||||
Quaternion &Rotate(Quaternion &other, Quaternion &buffer) const;
|
||||
|
||||
/**
|
||||
* @brief Normalize the quaternion to a magnitude of 1
|
||||
*/
|
||||
void Normalize();
|
||||
/**
|
||||
* @brief Normalize the quaternion to a magnitude of 1
|
||||
*/
|
||||
void Normalize();
|
||||
|
||||
/**
|
||||
* @brief Convert the quaternion to a rotation matrix
|
||||
* @return The rotation matrix
|
||||
*/
|
||||
Matrix<3, 3> ToRotationMatrix() const;
|
||||
/**
|
||||
* @brief Convert the quaternion to a rotation matrix
|
||||
* @return The rotation matrix
|
||||
*/
|
||||
Matrix<3, 3> ToRotationMatrix() const;
|
||||
|
||||
/**
|
||||
* @brief Convert the quaternion to an Euler angle representation
|
||||
* @return The Euler angle representation of the quaternion
|
||||
*/
|
||||
Matrix<3, 1> ToEulerAngle() const;
|
||||
/**
|
||||
* @brief Convert the quaternion to an Euler angle representation
|
||||
* @return The Euler angle representation of the quaternion
|
||||
*/
|
||||
Matrix<3, 1> ToEulerAngle() const;
|
||||
|
||||
// Give people an easy way to access the elements
|
||||
float &w{matrix[0]};
|
||||
float &v1{matrix[1]};
|
||||
float &v2{matrix[2]};
|
||||
float &v3{matrix[3]};
|
||||
// Give people an easy way to access the elements
|
||||
float &w{matrix[0]};
|
||||
float &v1{matrix[1]};
|
||||
float &v2{matrix[2]};
|
||||
float &v3{matrix[3]};
|
||||
};
|
||||
|
||||
#endif // QUATERNION_H_
|
||||
@@ -10,41 +10,61 @@
|
||||
#include <cmath>
|
||||
#include <iostream>
|
||||
|
||||
// Helper functions
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
float matrixSum(const Matrix<rows, columns> &matrix) {
|
||||
float sum = 0;
|
||||
for (uint32_t i = 0; i < rows * columns; i++) {
|
||||
float number = matrix.ToArray()[i];
|
||||
sum += number * number;
|
||||
}
|
||||
return std::sqrt(sum);
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
void printLabeledMatrix(const std::string &label,
|
||||
const Matrix<rows, columns> &matrix) {
|
||||
std::string strBuf = "";
|
||||
matrix.ToString(strBuf);
|
||||
std::cout << label << ":\n" << strBuf << std::endl;
|
||||
}
|
||||
|
||||
TEST_CASE("Initialization", "Matrix") {
|
||||
SECTION("Array Initialization") {
|
||||
std::array<float, 4> arr2{5, 6, 7, 8};
|
||||
Matrix<2, 2> mat2{arr2};
|
||||
// array initialization
|
||||
REQUIRE(mat2.Get(0, 0) == 5);
|
||||
REQUIRE(mat2.Get(0, 1) == 6);
|
||||
REQUIRE(mat2.Get(1, 0) == 7);
|
||||
REQUIRE(mat2.Get(1, 1) == 8);
|
||||
}
|
||||
|
||||
SECTION("Argument Pack Initialization") {
|
||||
Matrix<2, 2> mat1{1, 2, 3, 4};
|
||||
// template pack initialization
|
||||
REQUIRE(mat1.Get(0, 0) == 1);
|
||||
REQUIRE(mat1.Get(0, 1) == 2);
|
||||
REQUIRE(mat1.Get(1, 0) == 3);
|
||||
REQUIRE(mat1.Get(1, 1) == 4);
|
||||
}
|
||||
|
||||
SECTION("Single Argument Pack Initialization") {
|
||||
Matrix<2, 2> mat1{2};
|
||||
// template pack initialization
|
||||
REQUIRE(mat1.Get(0, 0) == 2);
|
||||
REQUIRE(mat1.Get(0, 1) == 2);
|
||||
REQUIRE(mat1.Get(1, 0) == 2);
|
||||
REQUIRE(mat1.Get(1, 1) == 2);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Elementary Matrix Operations", "Matrix") {
|
||||
std::array<float, 4> arr2{5, 6, 7, 8};
|
||||
Matrix<2, 2> mat1{1, 2, 3, 4};
|
||||
Matrix<2, 2> mat2{arr2};
|
||||
Matrix<2, 2> mat3{};
|
||||
|
||||
SECTION("Initialization") {
|
||||
// array initialization
|
||||
REQUIRE(mat1.Get(0, 0) == 1);
|
||||
REQUIRE(mat1.Get(0, 1) == 2);
|
||||
REQUIRE(mat1.Get(1, 0) == 3);
|
||||
REQUIRE(mat1.Get(1, 1) == 4);
|
||||
|
||||
// empty initialization
|
||||
REQUIRE(mat3.Get(0, 0) == 0);
|
||||
REQUIRE(mat3.Get(0, 1) == 0);
|
||||
REQUIRE(mat3.Get(1, 0) == 0);
|
||||
REQUIRE(mat3.Get(1, 1) == 0);
|
||||
|
||||
// template pack initialization
|
||||
REQUIRE(mat2.Get(0, 0) == 5);
|
||||
REQUIRE(mat2.Get(0, 1) == 6);
|
||||
REQUIRE(mat2.Get(1, 0) == 7);
|
||||
REQUIRE(mat2.Get(1, 1) == 8);
|
||||
|
||||
// large matrix
|
||||
Matrix<255, 255> mat6{};
|
||||
mat6.Fill(4);
|
||||
for (uint8_t row{0}; row < 255; row++) {
|
||||
for (uint8_t column{0}; column < 255; column++) {
|
||||
REQUIRE(mat6.Get(row, column) == 4);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Fill") {
|
||||
mat1.Fill(0);
|
||||
REQUIRE(mat1.Get(0, 0) == 0);
|
||||
@@ -66,10 +86,6 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
|
||||
}
|
||||
|
||||
SECTION("Addition") {
|
||||
std::string strBuf1 = "";
|
||||
mat1.ToString(strBuf1);
|
||||
std::cout << "Matrix 1:\n" << strBuf1 << std::endl;
|
||||
|
||||
mat1.Add(mat2, mat3);
|
||||
|
||||
REQUIRE(mat3.Get(0, 0) == 6);
|
||||
@@ -119,7 +135,35 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
|
||||
REQUIRE(mat3.Get(1, 0) == 43);
|
||||
REQUIRE(mat3.Get(1, 1) == 50);
|
||||
|
||||
// TODO: You need to add non-square multiplications to this.
|
||||
// Non-square multiplication
|
||||
Matrix<2, 4> mat4{1, 2, 3, 4, 5, 6, 7, 8};
|
||||
Matrix<4, 2> mat5{9, 10, 11, 12, 13, 14, 15, 16};
|
||||
Matrix<2, 2> mat6{};
|
||||
mat6 = mat4 * mat5;
|
||||
REQUIRE(mat6.Get(0, 0) == 130);
|
||||
REQUIRE(mat6.Get(0, 1) == 140);
|
||||
REQUIRE(mat6.Get(1, 0) == 322);
|
||||
REQUIRE(mat6.Get(1, 1) == 348);
|
||||
|
||||
// One more non-square multiplicaiton
|
||||
Matrix<4, 4> mat7{};
|
||||
mat7 = mat5 * mat4;
|
||||
REQUIRE(mat7.Get(0, 0) == 59);
|
||||
REQUIRE(mat7.Get(0, 1) == 78);
|
||||
REQUIRE(mat7.Get(0, 2) == 97);
|
||||
REQUIRE(mat7.Get(0, 3) == 116);
|
||||
REQUIRE(mat7.Get(1, 0) == 71);
|
||||
REQUIRE(mat7.Get(1, 1) == 94);
|
||||
REQUIRE(mat7.Get(1, 2) == 117);
|
||||
REQUIRE(mat7.Get(1, 3) == 140);
|
||||
REQUIRE(mat7.Get(2, 0) == 83);
|
||||
REQUIRE(mat7.Get(2, 1) == 110);
|
||||
REQUIRE(mat7.Get(2, 2) == 137);
|
||||
REQUIRE(mat7.Get(2, 3) == 164);
|
||||
REQUIRE(mat7.Get(3, 0) == 95);
|
||||
REQUIRE(mat7.Get(3, 1) == 126);
|
||||
REQUIRE(mat7.Get(3, 2) == 157);
|
||||
REQUIRE(mat7.Get(3, 3) == 188);
|
||||
}
|
||||
|
||||
SECTION("Scalar Multiplication") {
|
||||
@@ -254,26 +298,6 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
|
||||
REQUIRE(mat5.Get(2, 1) == 6);
|
||||
}
|
||||
|
||||
SECTION("Normalize") {
|
||||
mat1.Normalize(mat3);
|
||||
|
||||
float sqrt_30{sqrt(30)};
|
||||
|
||||
REQUIRE(mat3.Get(0, 0) == 1 / sqrt_30);
|
||||
REQUIRE(mat3.Get(0, 1) == 2 / sqrt_30);
|
||||
REQUIRE(mat3.Get(1, 0) == 3 / sqrt_30);
|
||||
REQUIRE(mat3.Get(1, 1) == 4 / sqrt_30);
|
||||
|
||||
Matrix<2, 1> mat4{-0.878877044, 2.92092276};
|
||||
Matrix<2, 1> mat5{};
|
||||
mat4.Normalize(mat5);
|
||||
|
||||
REQUIRE_THAT(mat5.Get(0, 0),
|
||||
Catch::Matchers::WithinRel(-0.288129855179f, 1e-6f));
|
||||
REQUIRE_THAT(mat5.Get(1, 0),
|
||||
Catch::Matchers::WithinRel(0.957591346325f, 1e-6f));
|
||||
}
|
||||
|
||||
SECTION("GET ROW") {
|
||||
Matrix<1, 2> mat1Rows{};
|
||||
mat1.GetRow(0, mat1Rows);
|
||||
@@ -328,29 +352,289 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
|
||||
Matrix<3, 3> mat4 = startMatrix;
|
||||
|
||||
Matrix<2, 2> mat5{10, 11, 12, 13};
|
||||
mat4.SetSubMatrix<2, 2, 0, 0>(mat5);
|
||||
mat4.SetSubMatrix(0, 0, mat5);
|
||||
REQUIRE(mat4.Get(0, 0) == 10);
|
||||
REQUIRE(mat4.Get(0, 1) == 11);
|
||||
REQUIRE(mat4.Get(1, 0) == 12);
|
||||
REQUIRE(mat4.Get(1, 1) == 13);
|
||||
|
||||
mat4 = startMatrix;
|
||||
mat4.SetSubMatrix<2, 2, 1, 1>(mat5);
|
||||
mat4.SetSubMatrix(1, 1, mat5);
|
||||
REQUIRE(mat4.Get(1, 1) == 10);
|
||||
REQUIRE(mat4.Get(1, 2) == 11);
|
||||
REQUIRE(mat4.Get(2, 1) == 12);
|
||||
REQUIRE(mat4.Get(2, 2) == 13);
|
||||
|
||||
Matrix<3, 1> mat6{10, 11, 12};
|
||||
mat4.SetSubMatrix<3, 1, 0, 0>(mat6);
|
||||
mat4.SetSubMatrix(0, 0, mat6);
|
||||
REQUIRE(mat4.Get(0, 0) == 10);
|
||||
REQUIRE(mat4.Get(1, 0) == 11);
|
||||
REQUIRE(mat4.Get(2, 0) == 12);
|
||||
|
||||
Matrix<1, 3> mat7{10, 11, 12};
|
||||
mat4.SetSubMatrix<1, 3, 0, 0>(mat7);
|
||||
mat4.SetSubMatrix(0, 0, mat7);
|
||||
REQUIRE(mat4.Get(0, 0) == 10);
|
||||
REQUIRE(mat4.Get(0, 1) == 11);
|
||||
REQUIRE(mat4.Get(0, 2) == 12);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Identity Matrix", "Matrix") {
|
||||
SECTION("Square Matrix") {
|
||||
Matrix<5, 5> matrix = Matrix<5, 5>::Identity();
|
||||
uint32_t oneColumnIndex{0};
|
||||
for (uint32_t row = 0; row < 5; row++) {
|
||||
for (uint32_t column = 0; column < 5; column++) {
|
||||
float value = matrix[row][column];
|
||||
if (oneColumnIndex == column) {
|
||||
REQUIRE_THAT(value, Catch::Matchers::WithinRel(1.0f, 1e-6f));
|
||||
} else {
|
||||
REQUIRE_THAT(value, Catch::Matchers::WithinRel(0.0f, 1e-6f));
|
||||
}
|
||||
}
|
||||
oneColumnIndex++;
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Wide Matrix") {
|
||||
Matrix<2, 5> matrix = Matrix<2, 5>::Identity();
|
||||
|
||||
uint32_t oneColumnIndex{0};
|
||||
for (uint32_t row = 0; row < 2; row++) {
|
||||
for (uint32_t column = 0; column < 5; column++) {
|
||||
float value = matrix[row][column];
|
||||
if (oneColumnIndex == column && row < 3) {
|
||||
REQUIRE_THAT(value, Catch::Matchers::WithinRel(1.0f, 1e-6f));
|
||||
} else {
|
||||
REQUIRE_THAT(value, Catch::Matchers::WithinRel(0.0f, 1e-6f));
|
||||
}
|
||||
}
|
||||
oneColumnIndex++;
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Tall Matrix") {
|
||||
Matrix<5, 2> matrix = Matrix<5, 2>::Identity();
|
||||
uint32_t oneColumnIndex{0};
|
||||
for (uint32_t row = 0; row < 5; row++) {
|
||||
for (uint32_t column = 0; column < 2; column++) {
|
||||
float value = matrix[row][column];
|
||||
if (oneColumnIndex == column) {
|
||||
REQUIRE_THAT(value, Catch::Matchers::WithinRel(1.0f, 1e-6f));
|
||||
} else {
|
||||
REQUIRE_THAT(value, Catch::Matchers::WithinRel(0.0f, 1e-6f));
|
||||
}
|
||||
}
|
||||
oneColumnIndex++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Add test for scalar division
|
||||
TEST_CASE("Euclidean Norm", "Matrix") {
|
||||
|
||||
SECTION("2x2 Normalize") {
|
||||
Matrix<2, 2> mat1{1, 2, 3, 4};
|
||||
Matrix<2, 2> mat2{};
|
||||
|
||||
mat2 = mat1 / mat1.EuclideanNorm();
|
||||
|
||||
float sqrt_30{static_cast<float>(sqrt(30.0f))};
|
||||
|
||||
REQUIRE(mat2.Get(0, 0) == 1 / sqrt_30);
|
||||
REQUIRE(mat2.Get(0, 1) == 2 / sqrt_30);
|
||||
REQUIRE(mat2.Get(1, 0) == 3 / sqrt_30);
|
||||
REQUIRE(mat2.Get(1, 1) == 4 / sqrt_30);
|
||||
|
||||
REQUIRE_THAT(matrixSum(mat2), Catch::Matchers::WithinRel(1.0f, 1e-6f));
|
||||
}
|
||||
|
||||
SECTION("2x1 (Vector) Normalize") {
|
||||
Matrix<2, 1> mat1{-0.878877044, 2.92092276};
|
||||
Matrix<2, 1> mat2{};
|
||||
mat2 = mat1 / mat1.EuclideanNorm();
|
||||
|
||||
REQUIRE_THAT(mat2.Get(0, 0),
|
||||
Catch::Matchers::WithinRel(-0.288129855179f, 1e-6f));
|
||||
REQUIRE_THAT(mat2.Get(1, 0),
|
||||
Catch::Matchers::WithinRel(0.957591346325f, 1e-6f));
|
||||
|
||||
float sum = matrixSum(mat2);
|
||||
REQUIRE_THAT(sum, Catch::Matchers::WithinRel(1.0f, 1e-6f));
|
||||
}
|
||||
|
||||
SECTION("Normalized vectors sum to 1") {
|
||||
Matrix<9, 1> mat1{1, 2, 3, 4, 5, 6, 7, 8, 9};
|
||||
Matrix<9, 1> mat2;
|
||||
mat2 = mat1 / mat1.EuclideanNorm();
|
||||
float sum = matrixSum(mat2);
|
||||
REQUIRE_THAT(sum, Catch::Matchers::WithinRel(1.0f, 1e-6f));
|
||||
|
||||
Matrix<2, 3> mat3{1, 2, 3, 4, 5, 6};
|
||||
Matrix<2, 3> mat4{};
|
||||
mat4 = mat3 / mat3.EuclideanNorm();
|
||||
sum = matrixSum(mat4);
|
||||
REQUIRE_THAT(sum, Catch::Matchers::WithinRel(1.0f, 1e-6f));
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("QR Decompositions", "Matrix") {
|
||||
SECTION("2x2 QRDecomposition") {
|
||||
Matrix<2, 2> A{1.0f, 2.0f, 3.0f, 4.0f};
|
||||
Matrix<2, 2> Q{}, R{};
|
||||
A.QRDecomposition(Q, R);
|
||||
|
||||
// Check that Q * R ≈ A
|
||||
Matrix<2, 2> QR{};
|
||||
Q.Mult(R, QR);
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 2; ++j) {
|
||||
REQUIRE_THAT(QR[i][j], Catch::Matchers::WithinRel(A[i][j], 1e-4f));
|
||||
}
|
||||
}
|
||||
|
||||
// Check that Q is orthonormal: Qᵀ * Q ≈ I
|
||||
Matrix<2, 2> Qt = Q.Transpose();
|
||||
Matrix<2, 2> QtQ{};
|
||||
Qt.Mult(Q, QtQ);
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 2; ++j) {
|
||||
if (i == j)
|
||||
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinRel(1.0f, 1e-4f));
|
||||
else
|
||||
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinAbs(0.0f, 1e-4f));
|
||||
}
|
||||
}
|
||||
|
||||
// Optional: R should be upper triangular
|
||||
REQUIRE(std::fabs(R[1][0]) < 1e-4f);
|
||||
|
||||
// check that all Q values are correct
|
||||
REQUIRE_THAT(Q[0][0], Catch::Matchers::WithinRel(0.3162f, 1e-4f));
|
||||
REQUIRE_THAT(Q[0][1], Catch::Matchers::WithinRel(0.94868f, 1e-4f));
|
||||
REQUIRE_THAT(Q[1][0], Catch::Matchers::WithinRel(0.94868f, 1e-4f));
|
||||
REQUIRE_THAT(Q[1][1], Catch::Matchers::WithinRel(-0.3162f, 1e-4f));
|
||||
|
||||
// check that all R values are correct
|
||||
REQUIRE_THAT(R[0][0], Catch::Matchers::WithinRel(3.16228f, 1e-4f));
|
||||
REQUIRE_THAT(R[0][1], Catch::Matchers::WithinRel(4.42719f, 1e-4f));
|
||||
REQUIRE_THAT(R[1][0], Catch::Matchers::WithinRel(0.0f, 1e-4f));
|
||||
REQUIRE_THAT(R[1][1], Catch::Matchers::WithinRel(0.63246f, 1e-4f));
|
||||
}
|
||||
|
||||
SECTION("3x3 QRDecomposition") {
|
||||
// this symmetrix tridiagonal matrix is well behaved for testing
|
||||
Matrix<3, 3> A{1, 2, 3, 4, 5, 6, 7, 8, 9};
|
||||
|
||||
Matrix<3, 3> Q{}, R{};
|
||||
A.QRDecomposition(Q, R);
|
||||
|
||||
// Check that Q * R ≈ A
|
||||
Matrix<3, 3> QR{};
|
||||
QR = Q * R;
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
for (int j = 0; j < 3; ++j) {
|
||||
REQUIRE_THAT(QR[i][j], Catch::Matchers::WithinRel(A[i][j], 1e-4f));
|
||||
}
|
||||
}
|
||||
|
||||
// Check that Qᵀ * Q ≈ I
|
||||
// Since the rank of this matrix is 2, only the top left 2x2 sub-matrix will
|
||||
// equal I.
|
||||
Matrix<3, 3> Qt = Q.Transpose();
|
||||
Matrix<3, 3> QtQ{};
|
||||
QtQ = Qt * Q;
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 2; ++j) {
|
||||
if (i == j)
|
||||
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinRel(1.0f, 1e-4f));
|
||||
else
|
||||
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinAbs(0.0f, 1e-4f));
|
||||
}
|
||||
}
|
||||
|
||||
// Optional: Check R is upper triangular
|
||||
for (int i = 1; i < 3; ++i) {
|
||||
for (int j = 0; j < i; ++j) {
|
||||
REQUIRE(std::fabs(R[i][j]) < 1e-4f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("4x2 QRDecomposition") {
|
||||
// A simple 4x2 matrix
|
||||
Matrix<4, 2> A{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f};
|
||||
|
||||
Matrix<4, 2> Q{};
|
||||
Matrix<2, 2> R{};
|
||||
A.QRDecomposition(Q, R);
|
||||
|
||||
// Check that Q * R ≈ A
|
||||
Matrix<4, 2> QR{};
|
||||
Q.Mult(R, QR);
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
for (int j = 0; j < 2; ++j) {
|
||||
REQUIRE_THAT(QR[i][j], Catch::Matchers::WithinRel(A[i][j], 1e-4f));
|
||||
}
|
||||
}
|
||||
|
||||
// Check that Qᵀ * Q ≈ I₂
|
||||
Matrix<2, 4> Qt = Q.Transpose();
|
||||
Matrix<2, 2> QtQ{};
|
||||
Qt.Mult(Q, QtQ);
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 2; ++j) {
|
||||
if (i == j)
|
||||
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinRel(1.0f, 1e-4f));
|
||||
else
|
||||
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinAbs(0.0f, 1e-4f));
|
||||
}
|
||||
}
|
||||
|
||||
// Check R is upper triangular (i > j ⇒ R[i][j] ≈ 0)
|
||||
for (int i = 1; i < 2; ++i) {
|
||||
for (int j = 0; j < i; ++j) {
|
||||
REQUIRE(std::fabs(R[i][j]) < 1e-4f);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Eigenvalues and Vectors", "Matrix") {
|
||||
SECTION("2x2 Eigen") {
|
||||
Matrix<2, 2> A{1.0f, 2.0f, 3.0f, 4.0f};
|
||||
Matrix<2, 2> vectors{};
|
||||
Matrix<2, 1> values{};
|
||||
|
||||
A.EigenQR(vectors, values, 1000000, 1e-20f);
|
||||
|
||||
REQUIRE_THAT(vectors[0][0], Catch::Matchers::WithinRel(0.41597f, 1e-4f));
|
||||
REQUIRE_THAT(vectors[1][0], Catch::Matchers::WithinRel(0.90938f, 1e-4f));
|
||||
REQUIRE_THAT(values[0][0], Catch::Matchers::WithinRel(5.372282f, 1e-4f));
|
||||
REQUIRE_THAT(values[1][0], Catch::Matchers::WithinRel(-0.372281f, 1e-4f));
|
||||
}
|
||||
|
||||
SECTION("3x3 Rank Defficient Eigen") {
|
||||
SKIP("Skipping this because QR decomposition isn't ready for it");
|
||||
// this symmetrix tridiagonal matrix is well behaved for testing
|
||||
Matrix<3, 3> A{1, 2, 3, 4, 5, 6, 7, 8, 9};
|
||||
|
||||
Matrix<3, 3> vectors{};
|
||||
Matrix<3, 1> values{};
|
||||
A.EigenQR(vectors, values, 1000000, 1e-8f);
|
||||
|
||||
std::string strBuf1 = "";
|
||||
vectors.ToString(strBuf1);
|
||||
std::cout << "Vectors:\n" << strBuf1 << std::endl;
|
||||
strBuf1 = "";
|
||||
values.ToString(strBuf1);
|
||||
std::cout << "Values:\n" << strBuf1 << std::endl;
|
||||
|
||||
REQUIRE_THAT(vectors[0][0], Catch::Matchers::WithinRel(0.23197f, 1e-4f));
|
||||
REQUIRE_THAT(vectors[1][0], Catch::Matchers::WithinRel(0.525322f, 1e-4f));
|
||||
REQUIRE_THAT(vectors[2][0], Catch::Matchers::WithinRel(0.81867f, 1e-4f));
|
||||
REQUIRE_THAT(values[0][0], Catch::Matchers::WithinRel(-1.11684f, 1e-4f));
|
||||
REQUIRE_THAT(values[1][0], Catch::Matchers::WithinRel(0.0f, 1e-4f));
|
||||
REQUIRE_THAT(values[2][0], Catch::Matchers::WithinRel(16.1168f, 1e-4f));
|
||||
}
|
||||
}
|
||||
@@ -8,6 +8,7 @@
|
||||
// any other libraries
|
||||
#include <array>
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
|
||||
// basically re-run all of the matrix tests with huge matrices and time the
|
||||
// results.
|
||||
@@ -29,13 +30,13 @@ TEST_CASE("Timing Tests", "Matrix") {
|
||||
Matrix<4, 4> mat5{};
|
||||
|
||||
SECTION("Addition") {
|
||||
for (uint32_t i{0}; i < 10000; i++) {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat3 = mat1 + mat2;
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Subtraction") {
|
||||
for (uint32_t i{0}; i < 10000; i++) {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat3 = mat1 - mat2;
|
||||
}
|
||||
}
|
||||
@@ -47,19 +48,19 @@ TEST_CASE("Timing Tests", "Matrix") {
|
||||
}
|
||||
|
||||
SECTION("Scalar Multiplication") {
|
||||
for (uint32_t i{0}; i < 10000; i++) {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat3 = mat1 * 3;
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Element Multiply") {
|
||||
for (uint32_t i{0}; i < 10000; i++) {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat1.ElementMultiply(mat2, mat3);
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Element Divide") {
|
||||
for (uint32_t i{0}; i < 10000; i++) {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat1.ElementDivide(mat2, mat3);
|
||||
}
|
||||
}
|
||||
@@ -68,52 +69,59 @@ TEST_CASE("Timing Tests", "Matrix") {
|
||||
// what about matrices of 0,0 or 1,1?
|
||||
// minor matrix for 2x2 matrix
|
||||
Matrix<49, 49> minorMat1{};
|
||||
for (uint32_t i{0}; i < 10000; i++) {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat1.MinorMatrix(minorMat1, 0, 0);
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Determinant") {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
for (uint32_t i{0}; i < 1000000; i++) {
|
||||
float det1 = mat4.Det();
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Matrix of Minors") {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
for (uint32_t i{0}; i < 1000000; i++) {
|
||||
mat4.MatrixOfMinors(mat5);
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Invert") {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
for (uint32_t i{0}; i < 1000000; i++) {
|
||||
mat5 = mat4.Invert();
|
||||
}
|
||||
};
|
||||
|
||||
SECTION("Transpose") {
|
||||
for (uint32_t i{0}; i < 10000; i++) {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat3 = mat1.Transpose();
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Normalize") {
|
||||
for (uint32_t i{0}; i < 10000; i++) {
|
||||
mat1.Normalize(mat3);
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat3 = mat1 / mat1.EuclideanNorm();
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("GET ROW") {
|
||||
Matrix<1, 50> mat1Rows{};
|
||||
for (uint32_t i{0}; i < 1000000; i++) {
|
||||
for (uint32_t i{0}; i < 100000000; i++) {
|
||||
mat1.GetRow(0, mat1Rows);
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("GET COLUMN") {
|
||||
Matrix<50, 1> mat1Columns{};
|
||||
for (uint32_t i{0}; i < 1000000; i++) {
|
||||
for (uint32_t i{0}; i < 100000000; i++) {
|
||||
mat1.GetColumn(0, mat1Columns);
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("QR Decomposition") {
|
||||
Matrix<50, 50> Q, R{};
|
||||
for (uint32_t i{0}; i < 500; i++) {
|
||||
mat1.QRDecomposition(Q, R);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,56 +1,36 @@
|
||||
Randomness seeded to: 3183250018
|
||||
0.179 s: Addition
|
||||
0.179 s: Timing Tests
|
||||
0.177 s: Subtraction
|
||||
0.177 s: Timing Tests
|
||||
1.931 s: Multiplication
|
||||
1.931 s: Timing Tests
|
||||
0.129 s: Scalar Multiplication
|
||||
0.129 s: Timing Tests
|
||||
0.175 s: Element Multiply
|
||||
0.175 s: Timing Tests
|
||||
0.174 s: Element Divide
|
||||
0.174 s: Timing Tests
|
||||
0.155 s: Minor Matrix
|
||||
0.155 s: Timing Tests
|
||||
0.104 s: Determinant
|
||||
0.104 s: Timing Tests
|
||||
0.465 s: Matrix of Minors
|
||||
0.465 s: Timing Tests
|
||||
0.111 s: Invert
|
||||
0.111 s: Timing Tests
|
||||
0.128 s: Transpose
|
||||
0.128 s: Timing Tests
|
||||
0.203 s: Normalize
|
||||
0.203 s: Timing Tests
|
||||
0.006 s: GET ROW
|
||||
0.006 s: Timing Tests
|
||||
0.238 s: GET COLUMN
|
||||
0.238 s: Timing Tests
|
||||
Running matrix-timing-tests with timing
|
||||
Randomness seeded to: 3567651885
|
||||
1.857 s: Addition
|
||||
1.857 s: Timing Tests
|
||||
1.788 s: Subtraction
|
||||
1.788 s: Timing Tests
|
||||
1.929 s: Multiplication
|
||||
1.929 s: Timing Tests
|
||||
1.268 s: Scalar Multiplication
|
||||
1.268 s: Timing Tests
|
||||
1.798 s: Element Multiply
|
||||
1.798 s: Timing Tests
|
||||
1.802 s: Element Divide
|
||||
1.803 s: Timing Tests
|
||||
1.553 s: Minor Matrix
|
||||
1.554 s: Timing Tests
|
||||
1.009 s: Determinant
|
||||
1.009 s: Timing Tests
|
||||
4.076 s: Matrix of Minors
|
||||
4.076 s: Timing Tests
|
||||
1.066 s: Invert
|
||||
1.066 s: Timing Tests
|
||||
1.246 s: Transpose
|
||||
1.246 s: Timing Tests
|
||||
2.284 s: Normalize
|
||||
2.284 s: Timing Tests
|
||||
0.606 s: GET ROW
|
||||
0.606 s: Timing Tests
|
||||
24.629 s: GET COLUMN
|
||||
24.630 s: Timing Tests
|
||||
3.064 s: QR Decomposition
|
||||
3.064 s: Timing Tests
|
||||
===============================================================================
|
||||
test cases: 1 | 1 passed
|
||||
assertions: - none -
|
||||
|
||||
Command being timed: "build/unit-tests/matrix-timing-tests -d yes"
|
||||
User time (seconds): 4.16
|
||||
System time (seconds): 0.00
|
||||
Percent of CPU this job got: 99%
|
||||
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:04.17
|
||||
Average shared text size (kbytes): 0
|
||||
Average unshared data size (kbytes): 0
|
||||
Average stack size (kbytes): 0
|
||||
Average total size (kbytes): 0
|
||||
Maximum resident set size (kbytes): 3200
|
||||
Average resident set size (kbytes): 0
|
||||
Major (requiring I/O) page faults: 184
|
||||
Minor (reclaiming a frame) page faults: 172
|
||||
Voluntary context switches: 1
|
||||
Involuntary context switches: 84
|
||||
Swaps: 0
|
||||
File system inputs: 12
|
||||
File system outputs: 1
|
||||
Socket messages sent: 0
|
||||
Socket messages received: 0
|
||||
Signals delivered: 0
|
||||
Page size (bytes): 4096
|
||||
Exit status: 0
|
||||
|
||||
Reference in New Issue
Block a user