Compare commits

22 Commits

Author SHA1 Message Date
48b016d8b7 Merge pull request 'Updating the readme' (#7) from update-readme into main
Reviewed-on: #7
2025-06-30 19:05:53 +00:00
8e4595f2ef Updated readme
All checks were successful
Merge-Checker / build_and_test (pull_request) Successful in 1m10s
2025-06-30 14:52:48 -04:00
99c0d3ed70 Merge pull request 'Adjusted timing test repetition and added QR decomposition' (#6) from Minor-cicd-fixes into main
All checks were successful
Merge-Checker / build_and_test (pull_request) Successful in 1m13s
Reviewed-on: #6
2025-06-10 23:06:02 +00:00
80c4ebfece Put time usage back
All checks were successful
Merge-Checker / build_and_test (pull_request) Successful in 1m18s
2025-06-07 11:08:56 -04:00
8b6f1de822 Updated timing test timings
All checks were successful
Merge-Checker / build_and_test (pull_request) Successful in 1m17s
2025-06-07 11:03:55 -04:00
719fc4d28a Adjusted timing test repetition and added QR decomposition
Some checks failed
Merge-Checker / build_and_test (pull_request) Has been cancelled
2025-06-07 10:58:59 -04:00
2a7eb93ebe Merge pull request 'Working on adding efficient eigenvector and value calculations' (#2) from eigenvector-and-values into main
Reviewed-on: #2
2025-06-06 22:32:18 +00:00
c099dfe760 Throwing in the towel on eigenvectors for now
All checks were successful
Merge-Checker / build_and_test (pull_request) Successful in 26s
2025-06-06 16:33:20 -04:00
d84664b567 Improved on old unit tests
Some checks failed
Merge-Checker / build_and_test (pull_request) Failing after 22s
2025-06-05 15:10:00 -04:00
1091bbda32 Got QR decomposition fully working! (The unit tests were wrong)
All checks were successful
Merge-Checker / build_and_test (pull_request) Successful in 37s
2025-06-03 10:01:52 -04:00
bec70facb2 Fixed clangd type hints in the matrix.cpp file
Some checks failed
Merge-Checker / build_and_test (pull_request) Failing after 26s
2025-06-03 09:08:23 -04:00
75edad3d0a Made my own equally wrong QR factorization
Some checks failed
Merge-Checker / build_and_test (pull_request) Failing after 20s
2025-06-02 21:44:41 -04:00
64820553c7 New norms and division by scalar
Some checks failed
Merge-Checker / build_and_test (pull_request) Failing after 21s
2025-06-02 16:19:23 -04:00
60a2b12b5f Replaced normalize with EuclideanNorm
Some checks failed
Merge-Checker / build_and_test (pull_request) Failing after 21s
2025-06-02 14:26:41 -04:00
37556c7c81 Made unit tests a little better and fixed matrix multiplication errors for non-square amtrices
Some checks failed
Merge-Checker / build_and_test (pull_request) Failing after 20s
2025-06-02 10:49:16 -04:00
6fdab5be30 Added unit tests for eigen
All checks were successful
Merge-Checker / build_and_test (pull_request) Successful in 23s
2025-05-30 15:26:19 -04:00
d07ac43f7b Added function comments
All checks were successful
Merge-Checker / build_and_test (pull_request) Successful in 23s
2025-05-30 14:47:42 -04:00
74afbfeab8 Added QR decomposition functions
All checks were successful
Merge-Checker / build_and_test (pull_request) Successful in 24s
2025-05-30 09:07:26 -04:00
1715d2b46c Merge pull request 'Add a merge checker script' (#1) from Testing-merge-checker into main
Reviewed-on: #1
2025-05-29 20:36:30 +00:00
296f233b28 Updated README
All checks were successful
Merge-Checker / build_and_test (pull_request) Successful in 23s
2025-05-29 16:35:52 -04:00
32c2a5cef2 Added a check to see if the timing results have signifigantly changed
Update matrix-timing-tests timings [skip ci]

Fixing timing test runner

Update matrix-timing-tests timings

Removed the seperate benchmark action
2025-05-29 16:34:31 -04:00
54d9699df8 Added a merge checker script that has to run before you can merge to main
Updated merge checker and seperated the matrix tests fro mthe timing tests

Added matrix test timings

Timings get auto-comitted

Update matrix-timing-tests timings [skip ci]

Updated readme

Update matrix-timing-tests timings [skip ci]

Fixing auto-checkout issues

updated readme

Update matrix-timing-tests timings [skip ci]

Split timing tests into its own job

Update matrix-timing-tests timings [skip ci]
2025-05-29 16:34:28 -04:00
12 changed files with 921 additions and 642 deletions

View File

@@ -1,127 +0,0 @@
name: Benchmarking
on:
pull_request:
branches: ["**"]
paths-ignore:
- 'unit-tests/timing-results/**'
jobs:
benchmarking:
runs-on: ubuntu-latest
steps:
- name: Checkout source code
uses: actions/checkout@v3
with:
persist-credentials: true
fetch-depth: 0
- name: Install dependencies (CMake + Ninja + build tools)
run: |
sudo apt-get update
sudo apt-get install -y cmake ninja-build build-essential time git
- name: Configure project with CMake
run: cmake -G Ninja -S . -B build/
- name: Build with Ninja
run: ninja -C build/
- name: Run matrix-timing-tests with per-test timing output and save results
run: |
mkdir -p unit-tests/timing-results
if [ -x build/unit-tests/matrix-timing-tests ]; then
echo "Running matrix-timing-tests with timing"
/usr/bin/time -v build/unit-tests/matrix-timing-tests -d yes &> unit-tests/timing-results/matrix-timing-tests.txt
cat unit-tests/timing-results/matrix-timing-tests.txt
else
echo "matrix-timing-tests executable not found or not executable"
exit 1
fi
- name: Compare timing results
id: check_diff
run: |
git show origin/${{ github.event.pull_request.head.ref }}:unit-tests/timing-results/matrix-timing-tests.txt > old.txt || echo "" > old.txt
cp unit-tests/timing-results/matrix-timing-tests.txt new.txt
echo "Comparing timing results for changes ≥ 0.1s (ignoring 'Timing Tests' lines)..."
changed=0
awk -v changed_ref=/tmp/timings_changed.flag '
BEGIN {
change_threshold = 0.1
}
FILENAME == "old.txt" && /^[0-9]+\.[0-9]+ s: / {
label = substr($0, index($0, ":") + 2)
if (label != "Timing Tests") {
label_times[label] = $1
}
}
FILENAME == "new.txt" && /^[0-9]+\.[0-9]+ s: / {
new_time = $1
label = substr($0, index($0, ":") + 2)
if (label == "Timing Tests") next
old_time = label_times[label]
delta = new_time - old_time
if (delta < 0) delta = -delta
if (old_time != "" && delta >= change_threshold) {
printf "⚠️ %.3f s → %.3f s: %s (Δ=%.3f s)\n", old_time, new_time, label, delta
system("touch " changed_ref)
} else if (old_time == "") {
printf "🆕 New timing entry: %.3f s: %s\n", new_time, label
system("touch " changed_ref)
}
}
END {
if (!system("test -f " changed_ref)) {
exit 0
} else {
print "✅ Timings havent changed significantly (Δ < 0.1s)."
exit 0
}
}
' old.txt new.txt
if [ -f /tmp/timings_changed.flag ]; then
echo "timings_changed=true" >> $GITHUB_OUTPUT
else
echo "timings_changed=false" >> $GITHUB_OUTPUT
fi
- name: Commit and push timing results
if: steps.check_diff.outputs.timings_changed == 'true' && github.event.pull_request.head.repo.full_name == github.repository
run: |
git config --global user.name "ci-bot"
git config --global user.email "ci-bot@local"
BRANCH_NAME="${{ github.event.pull_request.head.ref }}"
git stash
echo "Checking out source branch $BRANCH_NAME"
git fetch origin "$BRANCH_NAME"
git checkout "$BRANCH_NAME"
git pull
echo "Checking if last commit was a timing update"
LAST_COMMIT_MSG=$(git log -1 --pretty=%B)
if echo "$LAST_COMMIT_MSG" | grep -q "Update matrix-timing-tests timings"; then
echo "Last commit was a timing update, skipping commit."
exit 0
else
echo "Last commit name was: $LAST_COMMIT_MSG"
git stash pop
fi
git add unit-tests/timing-results/matrix-timing-tests.txt
if git diff --quiet --cached; then
echo "No changes to commit"
else
git commit -m "Update matrix-timing-tests timings [skip ci]"
git push origin "$BRANCH_NAME"
fi

View File

@@ -1,10 +1,8 @@
name: Merge-Checker
on:
workflow_run:
workflows: ["Benchmarking"]
types:
- completed
pull_request:
branches: ["**"]
jobs:
build_and_test:
@@ -37,4 +35,68 @@ jobs:
else
echo "Warning: $test_exec not found or not executable"
fi
done
done
- name: Run matrix-timing-tests
run: |
mkdir -p unit-tests/timing-results
if [ -x build/unit-tests/matrix-timing-tests ]; then
echo "Running matrix-timing-tests with timing"
/usr/bin/time -v build/unit-tests/matrix-timing-tests -d yes &> unit-tests/timing-results/matrix-timing-tests.txt
cat unit-tests/timing-results/matrix-timing-tests.txt
else
echo "matrix-timing-tests executable not found or not executable"
exit 1
fi
- name: Compare timing results
id: check_diff
run: |
git show origin/${{ github.event.pull_request.head.ref }}:unit-tests/timing-results/matrix-timing-tests.txt > old.txt || echo "" > old.txt
cp unit-tests/timing-results/matrix-timing-tests.txt new.txt
echo "Comparing timing results for changes ≥ 0.1s (ignoring 'Timing Tests' lines)..."
changed=0
awk -v changed_ref=/tmp/timings_changed.flag '
BEGIN {
change_threshold = 0.1
}
FILENAME == "old.txt" && /^[0-9]+\.[0-9]+ s: / {
label = substr($0, index($0, ":") + 2)
if (label != "Timing Tests") {
label_times[label] = $1
}
}
FILENAME == "new.txt" && /^[0-9]+\.[0-9]+ s: / {
new_time = $1
label = substr($0, index($0, ":") + 2)
if (label == "Timing Tests") next
old_time = label_times[label]
delta = new_time - old_time
if (delta < 0) delta = -delta
if (old_time != "" && delta >= change_threshold) {
printf "⚠️ %.3f s → %.3f s: %s (Δ=%.3f s)\n", old_time, new_time, label, delta
system("touch " changed_ref)
} else if (old_time == "") {
printf "🆕 New timing entry: %.3f s: %s\n", new_time, label
system("touch " changed_ref)
}
}
END {
if (!system("test -f " changed_ref)) {
exit 0
} else {
print "✅ Timings havent changed significantly (Δ < 0.1s)."
exit 0
}
}
' old.txt new.txt
if [ -f /tmp/timings_changed.flag ]; then
echo "timings_changed=true" >> $GITHUB_OUTPUT
else
echo "timings_changed=false" >> $GITHUB_OUTPUT
fi

View File

@@ -75,5 +75,9 @@
},
"clangd.enable": true,
"C_Cpp.dimInactiveRegions": false,
"editor.defaultFormatter": "xaver.clang-format"
"editor.defaultFormatter": "xaver.clang-format",
"clangd.inactiveRegions.useBackgroundHighlight": false,
"clangd.arguments": [
"--compile-commands-dir=${workspaceFolder}/build"
],
}

View File

@@ -6,7 +6,9 @@ add_subdirectory(unit-tests)
set(CMAKE_CXX_STANDARD 11)
add_compile_options(-fdiagnostics-color=always -Wall -Wextra -Wpedantic)
add_compile_options(-Wall -Wextra -Wpedantic)
add_compile_options (-fdiagnostics-color=always)
set(CMAKE_COLOR_DIAGNOSTICS ON)
include(FetchContent)

View File

@@ -2,4 +2,11 @@
This matrix math library is focused on embedded development and avoids any heap memory allocation unless you explicitly ask for it.
It uses templates to pre-allocate matrices on the stack.
There are still several operations that are works in progress
# Building
1. Initialize the repositiory with the command:
```bash
cmake -S . -B build -G Ninja
```
2. Go into the build folder and run `ninja`
3. That's it. You can test out the build by running `./unit-tests/matrix-tests`

View File

@@ -1,3 +1,10 @@
// This #ifndef section makes clangd happy so that it can properly do type hints
// in this file
#ifndef MATRIX_H_
#define MATRIX_H_
#include "Matrix.hpp"
#endif
#ifdef MATRIX_H_ // since the .cpp file has to be included by the .hpp file this
// will evaluate to true
#include "Matrix.hpp"
@@ -5,29 +12,28 @@
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <type_traits>
#include <cstring>
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns>::Matrix(float value)
{
this->Fill(value);
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns>::Matrix(const std::array<float, rows * columns> &array)
{
Matrix<rows, columns>::Matrix(const std::array<float, rows * columns> &array) {
this->setMatrixToArray(array);
}
template <uint8_t rows, uint8_t columns>
template <typename... Args>
Matrix<rows, columns>::Matrix(Args... args)
{
Matrix<rows, columns>::Matrix(Args... args) {
constexpr uint16_t arraySize{static_cast<uint16_t>(rows) *
static_cast<uint16_t>(columns)};
std::initializer_list<float> initList{static_cast<float>(args)...};
// if there is only one value, we actually want to do a fill
if (sizeof...(args) == 1) {
this->Fill(*initList.begin());
}
static_assert(sizeof...(args) == arraySize || sizeof...(args) == 1,
"You did not provide the right amount of initializers for this "
"matrix size");
// choose whichever buffer size is smaller for the copy length
uint32_t minSize =
std::min(arraySize, static_cast<uint16_t>(initList.size()));
@@ -35,22 +41,19 @@ Matrix<rows, columns>::Matrix(Args... args)
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::Identity()
{
this->Fill(0);
for (uint8_t idx{0}; idx < rows; idx++)
{
this->matrix[idx * columns + idx] = 1;
Matrix<rows, columns> Matrix<rows, columns>::Identity() {
Matrix<rows, columns> identityMatrix{0};
uint32_t minDimension = std::min(rows, columns);
for (uint8_t idx{0}; idx < minDimension; idx++) {
identityMatrix[idx][idx] = 1;
}
return identityMatrix;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns>::Matrix(const Matrix<rows, columns> &other)
{
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
Matrix<rows, columns>::Matrix(const Matrix<rows, columns> &other) {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
this->matrix[row_idx * columns + column_idx] =
other.Get(row_idx, column_idx);
}
@@ -59,21 +62,15 @@ Matrix<rows, columns>::Matrix(const Matrix<rows, columns> &other)
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::setMatrixToArray(
const std::array<float, rows * columns> &array)
{
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
const std::array<float, rows * columns> &array) {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
uint16_t array_idx =
static_cast<uint16_t>(row_idx) * static_cast<uint16_t>(columns) +
static_cast<uint16_t>(column_idx);
if (array_idx < array.size())
{
if (array_idx < array.size()) {
this->matrix[row_idx * columns + column_idx] = array[array_idx];
}
else
{
} else {
this->matrix[row_idx * columns + column_idx] = 0;
}
}
@@ -83,12 +80,9 @@ void Matrix<rows, columns>::setMatrixToArray(
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::Add(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const
{
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
Matrix<rows, columns> &result) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
result[row_idx][column_idx] =
this->Get(row_idx, column_idx) + other.Get(row_idx, column_idx);
}
@@ -99,12 +93,9 @@ Matrix<rows, columns>::Add(const Matrix<rows, columns> &other,
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::Sub(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const
{
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
Matrix<rows, columns> &result) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
result[row_idx][column_idx] =
this->Get(row_idx, column_idx) - other.Get(row_idx, column_idx);
}
@@ -117,18 +108,15 @@ template <uint8_t rows, uint8_t columns>
template <uint8_t other_columns>
Matrix<rows, other_columns> &
Matrix<rows, columns>::Mult(const Matrix<columns, other_columns> &other,
Matrix<rows, other_columns> &result) const
{
Matrix<rows, other_columns> &result) const {
// allocate some buffers for all of our dot products
Matrix<1, columns> this_row;
Matrix<columns, 1> other_column;
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
// get our row
this->GetRow(row_idx, this_row);
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
for (uint8_t column_idx{0}; column_idx < other_columns; column_idx++) {
// get the other matrix'ss column
other.GetColumn(column_idx, other_column);
@@ -143,12 +131,9 @@ Matrix<rows, columns>::Mult(const Matrix<columns, other_columns> &other,
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::Mult(float scalar, Matrix<rows, columns> &result) const
{
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
Matrix<rows, columns>::Mult(float scalar, Matrix<rows, columns> &result) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
result[row_idx][column_idx] = this->Get(row_idx, column_idx) * scalar;
}
}
@@ -157,9 +142,7 @@ Matrix<rows, columns>::Mult(float scalar, Matrix<rows, columns> &result) const
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns>
Matrix<rows, columns>::Invert() const
{
Matrix<rows, columns> Matrix<rows, columns>::Invert() const {
// since all matrix sizes have to be statically specified at compile time we
// can do this
static_assert(rows == columns,
@@ -169,8 +152,7 @@ Matrix<rows, columns>::Invert() const
// unfortunately we can't calculate this at compile time so we'll just reurn
// zeros
float determinant{this->Det()};
if (determinant == 0)
{
if (determinant == 0) {
// you can't invert a matrix with a negative determinant
result.Fill(0);
return result;
@@ -195,14 +177,10 @@ Matrix<rows, columns>::Invert() const
}
template <uint8_t rows, uint8_t columns>
Matrix<columns, rows>
Matrix<rows, columns>::Transpose() const
{
Matrix<columns, rows> Matrix<rows, columns>::Transpose() const {
Matrix<columns, rows> result{};
for (uint8_t column_idx{0}; column_idx < rows; column_idx++)
{
for (uint8_t row_idx{0}; row_idx < columns; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < rows; column_idx++) {
for (uint8_t row_idx{0}; row_idx < columns; row_idx++) {
result[row_idx][column_idx] = this->Get(column_idx, row_idx);
}
}
@@ -214,24 +192,19 @@ Matrix<rows, columns>::Transpose() const
// the fastest way to calculate a 2x2 matrix determinant
// template <>
// inline float Matrix<0, 0>::Det() const { return 1e+6; }
template <>
inline float Matrix<1, 1>::Det() const { return this->matrix[0]; }
template <>
inline float Matrix<2, 2>::Det() const
{
template <> inline float Matrix<1, 1>::Det() const { return this->matrix[0]; }
template <> inline float Matrix<2, 2>::Det() const {
return this->matrix[0] * this->matrix[3] - this->matrix[1] * this->matrix[2];
}
template <uint8_t rows, uint8_t columns>
float Matrix<rows, columns>::Det() const
{
float Matrix<rows, columns>::Det() const {
static_assert(rows == columns,
"You can't take the determinant of a non-square matrix.");
Matrix<rows - 1, columns - 1> MinorMatrix{};
float determinant{0};
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
// for odd indices the sign is negative
float sign = (column_idx % 2 == 0) ? 1 : -1;
determinant += sign * this->matrix[column_idx] *
@@ -244,12 +217,9 @@ float Matrix<rows, columns>::Det() const
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::ElementMultiply(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const
{
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
Matrix<rows, columns> &result) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
result[row_idx][column_idx] =
this->Get(row_idx, column_idx) * other.Get(row_idx, column_idx);
}
@@ -261,12 +231,9 @@ Matrix<rows, columns>::ElementMultiply(const Matrix<rows, columns> &other,
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::ElementDivide(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const
{
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
Matrix<rows, columns> &result) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
result[row_idx][column_idx] =
this->Get(row_idx, column_idx) / other.Get(row_idx, column_idx);
}
@@ -277,10 +244,8 @@ Matrix<rows, columns>::ElementDivide(const Matrix<rows, columns> &other,
template <uint8_t rows, uint8_t columns>
float Matrix<rows, columns>::Get(uint8_t row_index,
uint8_t column_index) const
{
if (row_index > rows - 1 || column_index > columns - 1)
{
uint8_t column_index) const {
if (row_index > rows - 1 || column_index > columns - 1) {
return 1e+10; // TODO: We should throw something here instead of failing
// quietly
}
@@ -290,8 +255,7 @@ float Matrix<rows, columns>::Get(uint8_t row_index,
template <uint8_t rows, uint8_t columns>
Matrix<1, columns> &
Matrix<rows, columns>::GetRow(uint8_t row_index,
Matrix<1, columns> &row) const
{
Matrix<1, columns> &row) const {
memcpy(&(row[0]), this->matrix.begin() + row_index * columns,
columns * sizeof(float));
@@ -301,10 +265,8 @@ Matrix<rows, columns>::GetRow(uint8_t row_index,
template <uint8_t rows, uint8_t columns>
Matrix<rows, 1> &
Matrix<rows, columns>::GetColumn(uint8_t column_index,
Matrix<rows, 1> &column) const
{
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
Matrix<rows, 1> &column) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
column[row_idx][0] = this->Get(row_idx, column_index);
}
@@ -312,17 +274,13 @@ Matrix<rows, columns>::GetColumn(uint8_t column_index,
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::ToString(std::string &stringBuffer) const
{
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
void Matrix<rows, columns>::ToString(std::string &stringBuffer) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
stringBuffer += "|";
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
stringBuffer +=
std::to_string(this->matrix[row_idx * columns + column_idx]);
if (column_idx != columns - 1)
{
if (column_idx != columns - 1) {
stringBuffer += "\t";
}
}
@@ -331,11 +289,14 @@ void Matrix<rows, columns>::ToString(std::string &stringBuffer) const
}
template <uint8_t rows, uint8_t columns>
std::array<float, columns> &Matrix<rows, columns>::
operator[](uint8_t row_index)
{
if (row_index > rows - 1)
{
const float *Matrix<rows, columns>::ToArray() const {
return this->matrix.data();
}
template <uint8_t rows, uint8_t columns>
std::array<float, columns> &
Matrix<rows, columns>::operator[](uint8_t row_index) {
if (row_index > rows - 1) {
// TODO: We should throw something here instead of failing quietly.
row_index = 0;
}
@@ -346,9 +307,8 @@ operator[](uint8_t row_index)
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &Matrix<rows, columns>::
operator=(const Matrix<rows, columns> &other)
{
Matrix<rows, columns> &
Matrix<rows, columns>::operator=(const Matrix<rows, columns> &other) {
memcpy(this->matrix.begin(), other.matrix.begin(),
rows * columns * sizeof(float));
@@ -357,18 +317,16 @@ operator=(const Matrix<rows, columns> &other)
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> Matrix<rows, columns>::
operator+(const Matrix<rows, columns> &other) const
{
Matrix<rows, columns>
Matrix<rows, columns>::operator+(const Matrix<rows, columns> &other) const {
Matrix<rows, columns> buffer{};
this->Add(other, buffer);
return buffer;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> Matrix<rows, columns>::
operator-(const Matrix<rows, columns> &other) const
{
Matrix<rows, columns>
Matrix<rows, columns>::operator-(const Matrix<rows, columns> &other) const {
Matrix<rows, columns> buffer{};
this->Sub(other, buffer);
return buffer;
@@ -376,30 +334,42 @@ operator-(const Matrix<rows, columns> &other) const
template <uint8_t rows, uint8_t columns>
template <uint8_t other_columns>
Matrix<rows, other_columns> Matrix<rows, columns>::
operator*(const Matrix<columns, other_columns> &other) const
{
Matrix<rows, other_columns> Matrix<rows, columns>::operator*(
const Matrix<columns, other_columns> &other) const {
Matrix<rows, other_columns> buffer{};
this->Mult(other, buffer);
return buffer;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> Matrix<rows, columns>::operator*(float scalar) const
{
Matrix<rows, columns> Matrix<rows, columns>::operator*(float scalar) const {
Matrix<rows, columns> buffer{};
this->Mult(scalar, buffer);
return buffer;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> Matrix<rows, columns>::operator/(float scalar) const {
Matrix<rows, columns> buffer = *this;
if (scalar == 0) {
buffer.Fill(1e+10);
return buffer;
}
for (uint8_t row = 0; row < rows; row++) {
for (uint8_t column = 0; column < columns; column++) {
buffer[row][column] /= scalar;
}
}
return buffer;
}
template <uint8_t rows, uint8_t columns>
template <uint8_t vector_size>
float Matrix<rows, columns>::DotProduct(const Matrix<1, vector_size> &vec1,
const Matrix<1, vector_size> &vec2)
{
const Matrix<1, vector_size> &vec2) {
float sum{0};
for (uint8_t i{0}; i < vector_size; i++)
{
for (uint8_t i{0}; i < vector_size; i++) {
sum += vec1.Get(0, i) * vec2.Get(0, i);
}
@@ -409,11 +379,9 @@ float Matrix<rows, columns>::DotProduct(const Matrix<1, vector_size> &vec1,
template <uint8_t rows, uint8_t columns>
template <uint8_t vector_size>
float Matrix<rows, columns>::DotProduct(const Matrix<vector_size, 1> &vec1,
const Matrix<vector_size, 1> &vec2)
{
const Matrix<vector_size, 1> &vec2) {
float sum{0};
for (uint8_t i{0}; i < vector_size; i++)
{
for (uint8_t i{0}; i < vector_size; i++) {
sum += vec1.Get(i, 0) * vec2.Get(i, 0);
}
@@ -421,12 +389,9 @@ float Matrix<rows, columns>::DotProduct(const Matrix<vector_size, 1> &vec1,
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::Fill(float value)
{
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
void Matrix<rows, columns>::Fill(float value) {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
this->matrix[row_idx * columns + column_idx] = value;
}
}
@@ -434,14 +399,11 @@ void Matrix<rows, columns>::Fill(float value)
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::MatrixOfMinors(Matrix<rows, columns> &result) const
{
Matrix<rows, columns>::MatrixOfMinors(Matrix<rows, columns> &result) const {
Matrix<rows - 1, columns - 1> MinorMatrix{};
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
this->MinorMatrix(MinorMatrix, row_idx, column_idx);
result[row_idx][column_idx] = MinorMatrix.Det();
}
@@ -453,20 +415,15 @@ Matrix<rows, columns>::MatrixOfMinors(Matrix<rows, columns> &result) const
template <uint8_t rows, uint8_t columns>
Matrix<rows - 1, columns - 1> &
Matrix<rows, columns>::MinorMatrix(Matrix<rows - 1, columns - 1> &result,
uint8_t row_idx, uint8_t column_idx) const
{
uint8_t row_idx, uint8_t column_idx) const {
std::array<float, (rows - 1) * (columns - 1)> subArray{};
uint16_t array_idx{0};
for (uint8_t row_iter{0}; row_iter < rows; row_iter++)
{
if (row_iter == row_idx)
{
for (uint8_t row_iter{0}; row_iter < rows; row_iter++) {
if (row_iter == row_idx) {
continue;
}
for (uint8_t column_iter{0}; column_iter < columns; column_iter++)
{
if (column_iter == column_idx)
{
for (uint8_t column_iter{0}; column_iter < columns; column_iter++) {
if (column_iter == column_idx) {
continue;
}
subArray[array_idx] = this->Get(row_iter, column_iter);
@@ -480,12 +437,9 @@ Matrix<rows, columns>::MinorMatrix(Matrix<rows - 1, columns - 1> &result,
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::adjugate(Matrix<rows, columns> &result) const
{
for (uint8_t row_iter{0}; row_iter < rows; row_iter++)
{
for (uint8_t column_iter{0}; column_iter < columns; column_iter++)
{
Matrix<rows, columns>::adjugate(Matrix<rows, columns> &result) const {
for (uint8_t row_iter{0}; row_iter < rows; row_iter++) {
for (uint8_t column_iter{0}; column_iter < columns; column_iter++) {
float sign = ((row_iter + 1) % 2) == 0 ? -1 : 1;
sign *= ((column_iter + 1) % 2) == 0 ? -1 : 1;
result[column_iter][row_iter] = this->Get(row_iter, column_iter) * sign;
@@ -496,55 +450,34 @@ Matrix<rows, columns>::adjugate(Matrix<rows, columns> &result) const
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::Normalize(Matrix<rows, columns> &result) const
{
float Matrix<rows, columns>::EuclideanNorm() const {
float sum{0};
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
float val{this->Get(row_idx, column_idx)};
sum += val * val;
}
}
if (sum == 0)
{
// this wouldn't do anything anyways
result.Fill(1e+6);
return result;
}
sum = sqrt(sum);
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
result[row_idx][column_idx] = this->Get(row_idx, column_idx) / sum;
}
}
return result;
return sqrt(sum);
}
template <uint8_t rows, uint8_t columns>
template <uint8_t sub_rows, uint8_t sub_columns, uint8_t row_offset, uint8_t column_offset>
Matrix<sub_rows, sub_columns> Matrix<rows, columns>::SubMatrix() const
{
template <uint8_t sub_rows, uint8_t sub_columns, uint8_t row_offset,
uint8_t column_offset>
Matrix<sub_rows, sub_columns> Matrix<rows, columns>::SubMatrix() const {
// static assert that sub_rows + row_offset <= rows
// static assert that sub_columns + column_offset <= columns
static_assert(sub_rows + row_offset <= rows,
"The submatrix you're trying to get is out of bounds (rows)");
static_assert(sub_columns + column_offset <= columns,
"The submatrix you're trying to get is out of bounds (columns)");
static_assert(
sub_columns + column_offset <= columns,
"The submatrix you're trying to get is out of bounds (columns)");
Matrix<sub_rows, sub_columns> buffer{};
for (uint8_t row_idx{0}; row_idx < sub_rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < sub_columns; column_idx++)
{
for (uint8_t row_idx{0}; row_idx < sub_rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < sub_columns; column_idx++) {
buffer[row_idx][column_idx] =
this->Get(row_idx + row_offset, column_idx + column_offset);
}
@@ -553,21 +486,121 @@ Matrix<sub_rows, sub_columns> Matrix<rows, columns>::SubMatrix() const
}
template <uint8_t rows, uint8_t columns>
template <uint8_t sub_rows, uint8_t sub_columns, uint8_t row_offset, uint8_t column_offset>
void Matrix<rows, columns>::SetSubMatrix(const Matrix<sub_rows, sub_columns> &sub_matrix)
{
static_assert(sub_rows + row_offset <= rows,
"The submatrix you're trying to set is out of bounds (rows)");
static_assert(sub_columns + column_offset <= columns,
"The submatrix you're trying to set is out of bounds (columns)");
template <uint8_t sub_rows, uint8_t sub_columns>
void Matrix<rows, columns>::SetSubMatrix(
uint8_t rowOffset, uint8_t columnOffset,
const Matrix<sub_rows, sub_columns> &sub_matrix) {
int16_t adjustedSubRows = sub_rows;
int16_t adjustedSubColumns = sub_columns;
int16_t adjustedRowOffset = rowOffset;
int16_t adjustedColumnOffset = columnOffset;
for (uint8_t row_idx{0}; row_idx < sub_rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < sub_columns; column_idx++)
{
this->matrix[(row_idx + row_offset) * columns + column_idx + column_offset] = sub_matrix.Get(row_idx, column_idx);
// a bunch of safety checks to make sure we don't overflow the matrix
if (sub_rows > rows) {
adjustedSubRows = rows;
}
if (sub_columns > columns) {
adjustedSubColumns = columns;
}
if (adjustedSubRows + adjustedRowOffset >= rows) {
adjustedRowOffset =
std::max(0, static_cast<int16_t>(rows) - adjustedSubRows);
}
if (adjustedSubColumns + adjustedColumnOffset >= columns) {
adjustedColumnOffset =
std::max(0, static_cast<int16_t>(columns) - adjustedSubColumns);
}
for (uint8_t row_idx{0}; row_idx < adjustedSubRows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < adjustedSubColumns; column_idx++) {
this->matrix[(row_idx + adjustedRowOffset) * columns + column_idx +
adjustedColumnOffset] = sub_matrix.Get(row_idx, column_idx);
}
}
}
// QR decomposition: decomposes this matrix A into Q and R
// Assumes square matrix
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::QRDecomposition(Matrix<rows, columns> &Q,
Matrix<columns, columns> &R) const {
static_assert(columns <= rows, "QR decomposition requires columns <= rows");
Q.Fill(0);
R.Fill(0);
Matrix<rows, 1> a_col, e, u, Q_column_k{};
Matrix<1, rows> a_T, e_T{};
for (uint8_t column = 0; column < columns; column++) {
this->GetColumn(column, a_col);
u = a_col;
// -----------------------
// ----- CALCULATE Q -----
// -----------------------
for (uint8_t k = 0; k <= column; k++) {
Q.GetColumn(k, Q_column_k);
Matrix<1, rows> Q_column_k_T = Q_column_k.Transpose();
u = u - Q_column_k * (Q_column_k_T * a_col);
}
float norm = u.EuclideanNorm();
if (norm > 1e-4) {
u = u / norm;
} else {
u.Fill(0);
}
Q.SetSubMatrix(0, column, u);
// -----------------------
// ----- CALCULATE R -----
// -----------------------
for (uint8_t k = 0; k <= column; k++) {
Q.GetColumn(k, e);
R[k][column] = (a_col.Transpose() * e).Get(0, 0);
}
}
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::EigenQR(Matrix<rows, rows> &eigenVectors,
Matrix<rows, 1> &eigenValues,
uint32_t maxIterations,
float tolerance) const {
static_assert(rows > 1, "Matrix size must be > 1 for QR iteration");
static_assert(rows == columns, "Matrix size must be square for QR iteration");
Matrix<rows, rows> Ak = *this; // Copy original matrix
Matrix<rows, rows> QQ{Matrix<rows, rows>::Identity()};
Matrix<rows, rows> shift{0};
for (uint32_t iter = 0; iter < maxIterations; ++iter) {
Matrix<rows, rows> Q, R;
// // QR shift lets us "attack" the first diagonal to speed up the algorithm
// shift = Matrix<rows, rows>::Identity() * Ak[rows - 1][rows - 1];
(Ak - shift).QRDecomposition(Q, R);
Ak = R * Q + shift;
QQ = QQ * Q;
// Check convergence: off-diagonal norm
float offDiagSum = 0.0f;
for (uint32_t row = 1; row < rows; row++) {
for (uint32_t column = 0; column < row; column++) {
offDiagSum += fabs(Ak[row][column]);
}
}
if (offDiagSum < tolerance) {
break;
}
}
// Diagonal elements are the eigenvalues
for (uint8_t i = 0; i < rows; i++) {
eigenValues[i][0] = Ak[i][i];
}
eigenVectors = QQ;
}
#endif // MATRIX_H_

View File

@@ -1,5 +1,4 @@
#ifndef MATRIX_H_
#define MATRIX_H_
#pragma once
#include <array>
#include <cstdint>
@@ -19,11 +18,6 @@ public:
*/
Matrix() = default;
/**
* @brief Create a matrix but fill all of its entries with one value
*/
Matrix(float value);
/**
* @brief Initialize a matrix with an array
*/
@@ -40,9 +34,9 @@ public:
template <typename... Args> Matrix(Args... args);
/**
* @brief set the matrix diagonals to 1 and all other values to 0
* @brief Create an identity matrix
*/
void Identity();
static Matrix<rows, columns> Identity();
/**
* @brief Set all elements in this to value
@@ -129,10 +123,11 @@ public:
Matrix<columns, rows> Transpose() const;
/**
* @brief reduce the matrix so the sum of its elements equal 1
* @brief Returns the euclidean magnitude of the matrix. Also known as the L2
* norm
* @param result a buffer to store the result into
*/
Matrix<rows, columns> &Normalize(Matrix<rows, columns> &result) const;
float EuclideanNorm() const;
/**
* @brief Get a row from the matrix
@@ -159,8 +154,16 @@ public:
*/
constexpr uint8_t GetColumnSize() { return columns; }
/**
* @brief Write a string representation of the matrix into the buffer
*/
void ToString(std::string &stringBuffer) const;
/**
* @brief Returns the internal representation of the matrix as an array
*/
const float *ToArray() const;
/**
* @brief Get an element from the matrix
* @param row the row index of the element
@@ -193,13 +196,15 @@ public:
Matrix<rows, columns> operator*(float scalar) const;
Matrix<rows, columns> operator/(float scalar) const;
template <uint8_t sub_rows, uint8_t sub_columns, uint8_t row_offset,
uint8_t column_offset>
Matrix<sub_rows, sub_columns> SubMatrix() const;
template <uint8_t sub_rows, uint8_t sub_columns, uint8_t row_offset,
uint8_t column_offset>
void SetSubMatrix(const Matrix<sub_rows, sub_columns> &sub_matrix);
template <uint8_t sub_rows, uint8_t sub_columns>
void SetSubMatrix(uint8_t rowOffset, uint8_t columnOffset,
const Matrix<sub_rows, sub_columns> &sub_matrix);
/**
* @brief take the dot product of the two vectors
@@ -216,6 +221,28 @@ public:
return vec1.Get(0, 0) * vec2.Get(0, 0);
}
/**
* @brief Performs QR decomposition on this matrix
* @param Q a buffer that will contain Q after the function completes
* @param R a buffer that will contain R after the function completes
*/
void QRDecomposition(Matrix<rows, columns> &Q,
Matrix<columns, columns> &R) const;
/**
* @brief Uses QR decomposition to efficiently calculate the eigenvectors
* and values of this matrix
* @param eigenVectors a buffer that will contain the eigenvectors fo this
* matrix
* @param eigenValues a buffer that will contain the eigenValues fo this
* matrix
* @param maxIterations the number of iterations to perform before giving
* up on reaching the given tolerance
* @param tolerance the level of accuracy to obtain before stopping.
*/
void EigenQR(Matrix<rows, rows> &eigenVectors, Matrix<rows, 1> &eigenValues,
uint32_t maxIterations = 1000, float tolerance = 1e-6f) const;
protected:
std::array<float, rows * columns> matrix;
@@ -225,6 +252,6 @@ private:
void setMatrixToArray(const std::array<float, rows * columns> &array);
};
#ifndef MATRIX_H_
#include "Matrix.cpp"
#endif // MATRIX_H_

View File

@@ -6,115 +6,115 @@
* @param angle The angle to rotate by
* @param axis The axis to rotate around
*/
Quaternion Quaternion::FromAngleAndAxis(float angle, const Matrix<1, 3> &axis)
{
const float halfAngle = angle / 2;
const float sinHalfAngle = sin(halfAngle);
Matrix<1, 3> normalizedAxis{};
axis.Normalize(normalizedAxis);
return Quaternion{
static_cast<float>(cos(halfAngle)),
normalizedAxis.Get(0, 0) * sinHalfAngle,
normalizedAxis.Get(0, 1) * sinHalfAngle,
normalizedAxis.Get(0, 2) * sinHalfAngle};
Quaternion Quaternion::FromAngleAndAxis(float angle, const Matrix<1, 3> &axis) {
const float halfAngle = angle / 2;
const float sinHalfAngle = sin(halfAngle);
Matrix<1, 3> normalizedAxis = axis / axis.EuclideanNorm();
return Quaternion{static_cast<float>(cos(halfAngle)),
normalizedAxis.Get(0, 0) * sinHalfAngle,
normalizedAxis.Get(0, 1) * sinHalfAngle,
normalizedAxis.Get(0, 2) * sinHalfAngle};
}
float Quaternion::operator[](uint8_t index) const
{
if (index < 4)
{
return this->matrix[index];
}
float Quaternion::operator[](uint8_t index) const {
if (index < 4) {
return this->matrix[index];
}
// index out of bounds
return 1e+6;
// index out of bounds
return 1e+6;
}
void Quaternion::operator=(const Quaternion &other)
{
memcpy(&(this->matrix), &(other.matrix), 4 * sizeof(float));
void Quaternion::operator=(const Quaternion &other) {
memcpy(&(this->matrix), &(other.matrix), 4 * sizeof(float));
}
Quaternion Quaternion::operator*(const Quaternion &other) const
{
Quaternion result{};
this->Q_Mult(other, result);
return result;
Quaternion Quaternion::operator*(const Quaternion &other) const {
Quaternion result{};
this->Q_Mult(other, result);
return result;
}
Quaternion Quaternion::operator*(float scalar) const
{
return Quaternion{this->w * scalar, this->v1 * scalar, this->v2 * scalar, this->v3 * scalar};
Quaternion Quaternion::operator*(float scalar) const {
return Quaternion{this->w * scalar, this->v1 * scalar, this->v2 * scalar,
this->v3 * scalar};
}
Quaternion Quaternion::operator+(const Quaternion &other) const
{
return Quaternion{this->w + other.w, this->v1 + other.v1, this->v2 + other.v2, this->v3 + other.v3};
Quaternion Quaternion::operator+(const Quaternion &other) const {
return Quaternion{this->w + other.w, this->v1 + other.v1, this->v2 + other.v2,
this->v3 + other.v3};
}
Quaternion &
Quaternion::Q_Mult(const Quaternion &other, Quaternion &buffer) const
{
Quaternion &Quaternion::Q_Mult(const Quaternion &other,
Quaternion &buffer) const {
// eq. 6
buffer.w = (other.w * this->w - other.v1 * this->v1 - other.v2 * this->v2 - other.v3 * this->v3);
buffer.v1 = (other.w * this->v1 + other.v1 * this->w - other.v2 * this->v3 + other.v3 * this->v2);
buffer.v2 = (other.w * this->v2 + other.v1 * this->v3 + other.v2 * this->w - other.v3 * this->v1);
buffer.v3 = (other.w * this->v3 - other.v1 * this->v2 + other.v2 * this->v1 + other.v3 * this->w);
return buffer;
// eq. 6
buffer.w = (other.w * this->w - other.v1 * this->v1 - other.v2 * this->v2 -
other.v3 * this->v3);
buffer.v1 = (other.w * this->v1 + other.v1 * this->w - other.v2 * this->v3 +
other.v3 * this->v2);
buffer.v2 = (other.w * this->v2 + other.v1 * this->v3 + other.v2 * this->w -
other.v3 * this->v1);
buffer.v3 = (other.w * this->v3 - other.v1 * this->v2 + other.v2 * this->v1 +
other.v3 * this->w);
return buffer;
}
Quaternion &Quaternion::Rotate(Quaternion &other, Quaternion &buffer) const
{
Quaternion prime{this->w, -this->v1, -this->v2, -this->v3};
buffer.v1 = other.v1;
buffer.v2 = other.v2;
buffer.v3 = other.v3;
buffer.w = 0;
Quaternion &Quaternion::Rotate(Quaternion &other, Quaternion &buffer) const {
Quaternion prime{this->w, -this->v1, -this->v2, -this->v3};
buffer.v1 = other.v1;
buffer.v2 = other.v2;
buffer.v3 = other.v3;
buffer.w = 0;
Quaternion temp{};
this->Q_Mult(buffer, temp);
temp.Q_Mult(prime, buffer);
return buffer;
Quaternion temp{};
this->Q_Mult(buffer, temp);
temp.Q_Mult(prime, buffer);
return buffer;
}
void Quaternion::Normalize()
{
float magnitude = sqrt(this->v1 * this->v1 + this->v2 * this->v2 + this->v3 * this->v3 + this->w * this->w);
if (magnitude == 0)
{
return;
}
this->v1 /= magnitude;
this->v2 /= magnitude;
this->v3 /= magnitude;
this->w /= magnitude;
void Quaternion::Normalize() {
float magnitude = sqrt(this->v1 * this->v1 + this->v2 * this->v2 +
this->v3 * this->v3 + this->w * this->w);
if (magnitude == 0) {
return;
}
this->v1 /= magnitude;
this->v2 /= magnitude;
this->v3 /= magnitude;
this->w /= magnitude;
}
Matrix<3, 3> Quaternion::ToRotationMatrix() const
{
float xx = this->v1 * this->v1;
float yy = this->v2 * this->v2;
float zz = this->v3 * this->v3;
Matrix<3, 3> rotationMatrix{
1 - 2 * (yy - zz), 2 * (this->v1 * this->v2 - this->v3 * this->w), 2 * (this->v1 * this->v3 + this->v2 * this->w),
2 * (this->v1 * this->v2 + this->v3 * this->w), 1 - 2 * (xx - zz), 2 * (this->v2 * this->v3 - this->v1 * this->w),
2 * (this->v1 * this->v3 - this->v2 * this->w), 2 * (this->v2 * this->v3 + this->v1 * this->w), 1 - 2 * (xx - yy)};
return rotationMatrix;
Matrix<3, 3> Quaternion::ToRotationMatrix() const {
float xx = this->v1 * this->v1;
float yy = this->v2 * this->v2;
float zz = this->v3 * this->v3;
Matrix<3, 3> rotationMatrix{1 - 2 * (yy - zz),
2 * (this->v1 * this->v2 - this->v3 * this->w),
2 * (this->v1 * this->v3 + this->v2 * this->w),
2 * (this->v1 * this->v2 + this->v3 * this->w),
1 - 2 * (xx - zz),
2 * (this->v2 * this->v3 - this->v1 * this->w),
2 * (this->v1 * this->v3 - this->v2 * this->w),
2 * (this->v2 * this->v3 + this->v1 * this->w),
1 - 2 * (xx - yy)};
return rotationMatrix;
};
Matrix<3, 1> Quaternion::ToEulerAngle() const
{
float sqv1 = this->v1 * this->v1;
float sqv2 = this->v2 * this->v2;
float sqv3 = this->v3 * this->v3;
float sqw = this->w * this->w;
Matrix<3, 1> Quaternion::ToEulerAngle() const {
float sqv1 = this->v1 * this->v1;
float sqv2 = this->v2 * this->v2;
float sqv3 = this->v3 * this->v3;
float sqw = this->w * this->w;
Matrix<3, 1> eulerAngle;
{
atan2(2.0 * (this->v1 * this->v2 + this->v3 * this->w), (sqv1 - sqv2 - sqv3 + sqw));
asin(-2.0 * (this->v1 * this->v3 - this->v2 * this->w) / (sqv1 + sqv2 + sqv3 + sqw));
atan2(2.0 * (this->v2 * this->v3 + this->v1 * this->w), (-sqv1 - sqv2 + sqv3 + sqw));
};
return eulerAngle;
Matrix<3, 1> eulerAngle;
{
atan2(2.0 * (this->v1 * this->v2 + this->v3 * this->w),
(sqv1 - sqv2 - sqv3 + sqw));
asin(-2.0 * (this->v1 * this->v3 - this->v2 * this->w) /
(sqv1 + sqv2 + sqv3 + sqw));
atan2(2.0 * (this->v2 * this->v3 + this->v1 * this->w),
(-sqv1 - sqv2 + sqv3 + sqw));
};
return eulerAngle;
}

View File

@@ -2,90 +2,89 @@
#define QUATERNION_H_
#include "Matrix.hpp"
class Quaternion : public Matrix<1, 4>
{
class Quaternion : public Matrix<1, 4> {
public:
Quaternion() : Matrix<1, 4>() {}
Quaternion(float fillValue) : Matrix<1, 4>(fillValue) {}
Quaternion(float w, float v1, float v2, float v3) : Matrix<1, 4>(w, v1, v2, v3) {}
Quaternion(const Quaternion &q) : Matrix<1, 4>(q.w, q.v1, q.v2, q.v3) {}
Quaternion(const Matrix<1, 4> &matrix) : Matrix<1, 4>(matrix) {}
Quaternion(const std::array<float, 4> &array) : Matrix<1, 4>(array) {}
Quaternion() : Matrix<1, 4>() {}
Quaternion(float w, float v1, float v2, float v3)
: Matrix<1, 4>(w, v1, v2, v3) {}
Quaternion(const Quaternion &q) : Matrix<1, 4>(q.w, q.v1, q.v2, q.v3) {}
Quaternion(const Matrix<1, 4> &matrix) : Matrix<1, 4>(matrix) {}
Quaternion(const std::array<float, 4> &array) : Matrix<1, 4>(array) {}
/**
* @brief Create a quaternion from an angle and axis
* @param angle The angle to rotate by
* @param axis The axis to rotate around
*/
static Quaternion FromAngleAndAxis(float angle, const Matrix<1, 3> &axis);
/**
* @brief Create a quaternion from an angle and axis
* @param angle The angle to rotate by
* @param axis The axis to rotate around
*/
static Quaternion FromAngleAndAxis(float angle, const Matrix<1, 3> &axis);
/**
* @brief Access the elements of the quaternion
* @param index The index of the element to access
* @return The value of the element at the index
*/
float operator[](uint8_t index) const;
/**
* @brief Access the elements of the quaternion
* @param index The index of the element to access
* @return The value of the element at the index
*/
float operator[](uint8_t index) const;
/**
* @brief Assign one quaternion to another
*/
void operator=(const Quaternion &other);
/**
* @brief Assign one quaternion to another
*/
void operator=(const Quaternion &other);
/**
* @brief Do quaternion multiplication
*/
Quaternion operator*(const Quaternion &other) const;
/**
* @brief Do quaternion multiplication
*/
Quaternion operator*(const Quaternion &other) const;
/**
* @brief Multiply the quaternion by a scalar
*/
Quaternion operator*(float scalar) const;
/**
* @brief Multiply the quaternion by a scalar
*/
Quaternion operator*(float scalar) const;
/**
* @brief Add two quaternions together
* @param other The quaternion to add to this one
* @return The net quaternion
*/
Quaternion operator+(const Quaternion &other) const;
/**
* @brief Add two quaternions together
* @param other The quaternion to add to this one
* @return The net quaternion
*/
Quaternion operator+(const Quaternion &other) const;
/**
* @brief Q_Mult a quaternion by another quaternion
* @param other The quaternion to rotate by
* @param buffer The buffer to store the result in
* @return A reference to the buffer
*/
Quaternion &Q_Mult(const Quaternion &other, Quaternion &buffer) const;
/**
* @brief Q_Mult a quaternion by another quaternion
* @param other The quaternion to rotate by
* @param buffer The buffer to store the result in
* @return A reference to the buffer
*/
Quaternion &Q_Mult(const Quaternion &other, Quaternion &buffer) const;
/**
* @brief Rotate a quaternion by this quaternion
* @param other The quaternion to rotate
* @param buffer The buffer to store the result in
*
*/
Quaternion &Rotate(Quaternion &other, Quaternion &buffer) const;
/**
* @brief Rotate a quaternion by this quaternion
* @param other The quaternion to rotate
* @param buffer The buffer to store the result in
*
*/
Quaternion &Rotate(Quaternion &other, Quaternion &buffer) const;
/**
* @brief Normalize the quaternion to a magnitude of 1
*/
void Normalize();
/**
* @brief Normalize the quaternion to a magnitude of 1
*/
void Normalize();
/**
* @brief Convert the quaternion to a rotation matrix
* @return The rotation matrix
*/
Matrix<3, 3> ToRotationMatrix() const;
/**
* @brief Convert the quaternion to a rotation matrix
* @return The rotation matrix
*/
Matrix<3, 3> ToRotationMatrix() const;
/**
* @brief Convert the quaternion to an Euler angle representation
* @return The Euler angle representation of the quaternion
*/
Matrix<3, 1> ToEulerAngle() const;
/**
* @brief Convert the quaternion to an Euler angle representation
* @return The Euler angle representation of the quaternion
*/
Matrix<3, 1> ToEulerAngle() const;
// Give people an easy way to access the elements
float &w{matrix[0]};
float &v1{matrix[1]};
float &v2{matrix[2]};
float &v3{matrix[3]};
// Give people an easy way to access the elements
float &w{matrix[0]};
float &v1{matrix[1]};
float &v2{matrix[2]};
float &v3{matrix[3]};
};
#endif // QUATERNION_H_

View File

@@ -10,41 +10,61 @@
#include <cmath>
#include <iostream>
// Helper functions
template <uint8_t rows, uint8_t columns>
float matrixSum(const Matrix<rows, columns> &matrix) {
float sum = 0;
for (uint32_t i = 0; i < rows * columns; i++) {
float number = matrix.ToArray()[i];
sum += number * number;
}
return std::sqrt(sum);
}
template <uint8_t rows, uint8_t columns>
void printLabeledMatrix(const std::string &label,
const Matrix<rows, columns> &matrix) {
std::string strBuf = "";
matrix.ToString(strBuf);
std::cout << label << ":\n" << strBuf << std::endl;
}
TEST_CASE("Initialization", "Matrix") {
SECTION("Array Initialization") {
std::array<float, 4> arr2{5, 6, 7, 8};
Matrix<2, 2> mat2{arr2};
// array initialization
REQUIRE(mat2.Get(0, 0) == 5);
REQUIRE(mat2.Get(0, 1) == 6);
REQUIRE(mat2.Get(1, 0) == 7);
REQUIRE(mat2.Get(1, 1) == 8);
}
SECTION("Argument Pack Initialization") {
Matrix<2, 2> mat1{1, 2, 3, 4};
// template pack initialization
REQUIRE(mat1.Get(0, 0) == 1);
REQUIRE(mat1.Get(0, 1) == 2);
REQUIRE(mat1.Get(1, 0) == 3);
REQUIRE(mat1.Get(1, 1) == 4);
}
SECTION("Single Argument Pack Initialization") {
Matrix<2, 2> mat1{2};
// template pack initialization
REQUIRE(mat1.Get(0, 0) == 2);
REQUIRE(mat1.Get(0, 1) == 2);
REQUIRE(mat1.Get(1, 0) == 2);
REQUIRE(mat1.Get(1, 1) == 2);
}
}
TEST_CASE("Elementary Matrix Operations", "Matrix") {
std::array<float, 4> arr2{5, 6, 7, 8};
Matrix<2, 2> mat1{1, 2, 3, 4};
Matrix<2, 2> mat2{arr2};
Matrix<2, 2> mat3{};
SECTION("Initialization") {
// array initialization
REQUIRE(mat1.Get(0, 0) == 1);
REQUIRE(mat1.Get(0, 1) == 2);
REQUIRE(mat1.Get(1, 0) == 3);
REQUIRE(mat1.Get(1, 1) == 4);
// empty initialization
REQUIRE(mat3.Get(0, 0) == 0);
REQUIRE(mat3.Get(0, 1) == 0);
REQUIRE(mat3.Get(1, 0) == 0);
REQUIRE(mat3.Get(1, 1) == 0);
// template pack initialization
REQUIRE(mat2.Get(0, 0) == 5);
REQUIRE(mat2.Get(0, 1) == 6);
REQUIRE(mat2.Get(1, 0) == 7);
REQUIRE(mat2.Get(1, 1) == 8);
// large matrix
Matrix<255, 255> mat6{};
mat6.Fill(4);
for (uint8_t row{0}; row < 255; row++) {
for (uint8_t column{0}; column < 255; column++) {
REQUIRE(mat6.Get(row, column) == 4);
}
}
}
SECTION("Fill") {
mat1.Fill(0);
REQUIRE(mat1.Get(0, 0) == 0);
@@ -66,10 +86,6 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
}
SECTION("Addition") {
std::string strBuf1 = "";
mat1.ToString(strBuf1);
std::cout << "Matrix 1:\n" << strBuf1 << std::endl;
mat1.Add(mat2, mat3);
REQUIRE(mat3.Get(0, 0) == 6);
@@ -119,7 +135,35 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
REQUIRE(mat3.Get(1, 0) == 43);
REQUIRE(mat3.Get(1, 1) == 50);
// TODO: You need to add non-square multiplications to this.
// Non-square multiplication
Matrix<2, 4> mat4{1, 2, 3, 4, 5, 6, 7, 8};
Matrix<4, 2> mat5{9, 10, 11, 12, 13, 14, 15, 16};
Matrix<2, 2> mat6{};
mat6 = mat4 * mat5;
REQUIRE(mat6.Get(0, 0) == 130);
REQUIRE(mat6.Get(0, 1) == 140);
REQUIRE(mat6.Get(1, 0) == 322);
REQUIRE(mat6.Get(1, 1) == 348);
// One more non-square multiplicaiton
Matrix<4, 4> mat7{};
mat7 = mat5 * mat4;
REQUIRE(mat7.Get(0, 0) == 59);
REQUIRE(mat7.Get(0, 1) == 78);
REQUIRE(mat7.Get(0, 2) == 97);
REQUIRE(mat7.Get(0, 3) == 116);
REQUIRE(mat7.Get(1, 0) == 71);
REQUIRE(mat7.Get(1, 1) == 94);
REQUIRE(mat7.Get(1, 2) == 117);
REQUIRE(mat7.Get(1, 3) == 140);
REQUIRE(mat7.Get(2, 0) == 83);
REQUIRE(mat7.Get(2, 1) == 110);
REQUIRE(mat7.Get(2, 2) == 137);
REQUIRE(mat7.Get(2, 3) == 164);
REQUIRE(mat7.Get(3, 0) == 95);
REQUIRE(mat7.Get(3, 1) == 126);
REQUIRE(mat7.Get(3, 2) == 157);
REQUIRE(mat7.Get(3, 3) == 188);
}
SECTION("Scalar Multiplication") {
@@ -254,26 +298,6 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
REQUIRE(mat5.Get(2, 1) == 6);
}
SECTION("Normalize") {
mat1.Normalize(mat3);
float sqrt_30{sqrt(30)};
REQUIRE(mat3.Get(0, 0) == 1 / sqrt_30);
REQUIRE(mat3.Get(0, 1) == 2 / sqrt_30);
REQUIRE(mat3.Get(1, 0) == 3 / sqrt_30);
REQUIRE(mat3.Get(1, 1) == 4 / sqrt_30);
Matrix<2, 1> mat4{-0.878877044, 2.92092276};
Matrix<2, 1> mat5{};
mat4.Normalize(mat5);
REQUIRE_THAT(mat5.Get(0, 0),
Catch::Matchers::WithinRel(-0.288129855179f, 1e-6f));
REQUIRE_THAT(mat5.Get(1, 0),
Catch::Matchers::WithinRel(0.957591346325f, 1e-6f));
}
SECTION("GET ROW") {
Matrix<1, 2> mat1Rows{};
mat1.GetRow(0, mat1Rows);
@@ -328,29 +352,289 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
Matrix<3, 3> mat4 = startMatrix;
Matrix<2, 2> mat5{10, 11, 12, 13};
mat4.SetSubMatrix<2, 2, 0, 0>(mat5);
mat4.SetSubMatrix(0, 0, mat5);
REQUIRE(mat4.Get(0, 0) == 10);
REQUIRE(mat4.Get(0, 1) == 11);
REQUIRE(mat4.Get(1, 0) == 12);
REQUIRE(mat4.Get(1, 1) == 13);
mat4 = startMatrix;
mat4.SetSubMatrix<2, 2, 1, 1>(mat5);
mat4.SetSubMatrix(1, 1, mat5);
REQUIRE(mat4.Get(1, 1) == 10);
REQUIRE(mat4.Get(1, 2) == 11);
REQUIRE(mat4.Get(2, 1) == 12);
REQUIRE(mat4.Get(2, 2) == 13);
Matrix<3, 1> mat6{10, 11, 12};
mat4.SetSubMatrix<3, 1, 0, 0>(mat6);
mat4.SetSubMatrix(0, 0, mat6);
REQUIRE(mat4.Get(0, 0) == 10);
REQUIRE(mat4.Get(1, 0) == 11);
REQUIRE(mat4.Get(2, 0) == 12);
Matrix<1, 3> mat7{10, 11, 12};
mat4.SetSubMatrix<1, 3, 0, 0>(mat7);
mat4.SetSubMatrix(0, 0, mat7);
REQUIRE(mat4.Get(0, 0) == 10);
REQUIRE(mat4.Get(0, 1) == 11);
REQUIRE(mat4.Get(0, 2) == 12);
}
}
TEST_CASE("Identity Matrix", "Matrix") {
SECTION("Square Matrix") {
Matrix<5, 5> matrix = Matrix<5, 5>::Identity();
uint32_t oneColumnIndex{0};
for (uint32_t row = 0; row < 5; row++) {
for (uint32_t column = 0; column < 5; column++) {
float value = matrix[row][column];
if (oneColumnIndex == column) {
REQUIRE_THAT(value, Catch::Matchers::WithinRel(1.0f, 1e-6f));
} else {
REQUIRE_THAT(value, Catch::Matchers::WithinRel(0.0f, 1e-6f));
}
}
oneColumnIndex++;
}
}
SECTION("Wide Matrix") {
Matrix<2, 5> matrix = Matrix<2, 5>::Identity();
uint32_t oneColumnIndex{0};
for (uint32_t row = 0; row < 2; row++) {
for (uint32_t column = 0; column < 5; column++) {
float value = matrix[row][column];
if (oneColumnIndex == column && row < 3) {
REQUIRE_THAT(value, Catch::Matchers::WithinRel(1.0f, 1e-6f));
} else {
REQUIRE_THAT(value, Catch::Matchers::WithinRel(0.0f, 1e-6f));
}
}
oneColumnIndex++;
}
}
SECTION("Tall Matrix") {
Matrix<5, 2> matrix = Matrix<5, 2>::Identity();
uint32_t oneColumnIndex{0};
for (uint32_t row = 0; row < 5; row++) {
for (uint32_t column = 0; column < 2; column++) {
float value = matrix[row][column];
if (oneColumnIndex == column) {
REQUIRE_THAT(value, Catch::Matchers::WithinRel(1.0f, 1e-6f));
} else {
REQUIRE_THAT(value, Catch::Matchers::WithinRel(0.0f, 1e-6f));
}
}
oneColumnIndex++;
}
}
}
// TODO: Add test for scalar division
TEST_CASE("Euclidean Norm", "Matrix") {
SECTION("2x2 Normalize") {
Matrix<2, 2> mat1{1, 2, 3, 4};
Matrix<2, 2> mat2{};
mat2 = mat1 / mat1.EuclideanNorm();
float sqrt_30{static_cast<float>(sqrt(30.0f))};
REQUIRE(mat2.Get(0, 0) == 1 / sqrt_30);
REQUIRE(mat2.Get(0, 1) == 2 / sqrt_30);
REQUIRE(mat2.Get(1, 0) == 3 / sqrt_30);
REQUIRE(mat2.Get(1, 1) == 4 / sqrt_30);
REQUIRE_THAT(matrixSum(mat2), Catch::Matchers::WithinRel(1.0f, 1e-6f));
}
SECTION("2x1 (Vector) Normalize") {
Matrix<2, 1> mat1{-0.878877044, 2.92092276};
Matrix<2, 1> mat2{};
mat2 = mat1 / mat1.EuclideanNorm();
REQUIRE_THAT(mat2.Get(0, 0),
Catch::Matchers::WithinRel(-0.288129855179f, 1e-6f));
REQUIRE_THAT(mat2.Get(1, 0),
Catch::Matchers::WithinRel(0.957591346325f, 1e-6f));
float sum = matrixSum(mat2);
REQUIRE_THAT(sum, Catch::Matchers::WithinRel(1.0f, 1e-6f));
}
SECTION("Normalized vectors sum to 1") {
Matrix<9, 1> mat1{1, 2, 3, 4, 5, 6, 7, 8, 9};
Matrix<9, 1> mat2;
mat2 = mat1 / mat1.EuclideanNorm();
float sum = matrixSum(mat2);
REQUIRE_THAT(sum, Catch::Matchers::WithinRel(1.0f, 1e-6f));
Matrix<2, 3> mat3{1, 2, 3, 4, 5, 6};
Matrix<2, 3> mat4{};
mat4 = mat3 / mat3.EuclideanNorm();
sum = matrixSum(mat4);
REQUIRE_THAT(sum, Catch::Matchers::WithinRel(1.0f, 1e-6f));
}
}
TEST_CASE("QR Decompositions", "Matrix") {
SECTION("2x2 QRDecomposition") {
Matrix<2, 2> A{1.0f, 2.0f, 3.0f, 4.0f};
Matrix<2, 2> Q{}, R{};
A.QRDecomposition(Q, R);
// Check that Q * R ≈ A
Matrix<2, 2> QR{};
Q.Mult(R, QR);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
REQUIRE_THAT(QR[i][j], Catch::Matchers::WithinRel(A[i][j], 1e-4f));
}
}
// Check that Q is orthonormal: Qᵀ * Q ≈ I
Matrix<2, 2> Qt = Q.Transpose();
Matrix<2, 2> QtQ{};
Qt.Mult(Q, QtQ);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
if (i == j)
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinRel(1.0f, 1e-4f));
else
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinAbs(0.0f, 1e-4f));
}
}
// Optional: R should be upper triangular
REQUIRE(std::fabs(R[1][0]) < 1e-4f);
// check that all Q values are correct
REQUIRE_THAT(Q[0][0], Catch::Matchers::WithinRel(0.3162f, 1e-4f));
REQUIRE_THAT(Q[0][1], Catch::Matchers::WithinRel(0.94868f, 1e-4f));
REQUIRE_THAT(Q[1][0], Catch::Matchers::WithinRel(0.94868f, 1e-4f));
REQUIRE_THAT(Q[1][1], Catch::Matchers::WithinRel(-0.3162f, 1e-4f));
// check that all R values are correct
REQUIRE_THAT(R[0][0], Catch::Matchers::WithinRel(3.16228f, 1e-4f));
REQUIRE_THAT(R[0][1], Catch::Matchers::WithinRel(4.42719f, 1e-4f));
REQUIRE_THAT(R[1][0], Catch::Matchers::WithinRel(0.0f, 1e-4f));
REQUIRE_THAT(R[1][1], Catch::Matchers::WithinRel(0.63246f, 1e-4f));
}
SECTION("3x3 QRDecomposition") {
// this symmetrix tridiagonal matrix is well behaved for testing
Matrix<3, 3> A{1, 2, 3, 4, 5, 6, 7, 8, 9};
Matrix<3, 3> Q{}, R{};
A.QRDecomposition(Q, R);
// Check that Q * R ≈ A
Matrix<3, 3> QR{};
QR = Q * R;
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
REQUIRE_THAT(QR[i][j], Catch::Matchers::WithinRel(A[i][j], 1e-4f));
}
}
// Check that Qᵀ * Q ≈ I
// Since the rank of this matrix is 2, only the top left 2x2 sub-matrix will
// equal I.
Matrix<3, 3> Qt = Q.Transpose();
Matrix<3, 3> QtQ{};
QtQ = Qt * Q;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
if (i == j)
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinRel(1.0f, 1e-4f));
else
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinAbs(0.0f, 1e-4f));
}
}
// Optional: Check R is upper triangular
for (int i = 1; i < 3; ++i) {
for (int j = 0; j < i; ++j) {
REQUIRE(std::fabs(R[i][j]) < 1e-4f);
}
}
}
SECTION("4x2 QRDecomposition") {
// A simple 4x2 matrix
Matrix<4, 2> A{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f};
Matrix<4, 2> Q{};
Matrix<2, 2> R{};
A.QRDecomposition(Q, R);
// Check that Q * R ≈ A
Matrix<4, 2> QR{};
Q.Mult(R, QR);
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 2; ++j) {
REQUIRE_THAT(QR[i][j], Catch::Matchers::WithinRel(A[i][j], 1e-4f));
}
}
// Check that Qᵀ * Q ≈ I₂
Matrix<2, 4> Qt = Q.Transpose();
Matrix<2, 2> QtQ{};
Qt.Mult(Q, QtQ);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
if (i == j)
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinRel(1.0f, 1e-4f));
else
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinAbs(0.0f, 1e-4f));
}
}
// Check R is upper triangular (i > j ⇒ R[i][j] ≈ 0)
for (int i = 1; i < 2; ++i) {
for (int j = 0; j < i; ++j) {
REQUIRE(std::fabs(R[i][j]) < 1e-4f);
}
}
}
}
TEST_CASE("Eigenvalues and Vectors", "Matrix") {
SECTION("2x2 Eigen") {
Matrix<2, 2> A{1.0f, 2.0f, 3.0f, 4.0f};
Matrix<2, 2> vectors{};
Matrix<2, 1> values{};
A.EigenQR(vectors, values, 1000000, 1e-20f);
REQUIRE_THAT(vectors[0][0], Catch::Matchers::WithinRel(0.41597f, 1e-4f));
REQUIRE_THAT(vectors[1][0], Catch::Matchers::WithinRel(0.90938f, 1e-4f));
REQUIRE_THAT(values[0][0], Catch::Matchers::WithinRel(5.372282f, 1e-4f));
REQUIRE_THAT(values[1][0], Catch::Matchers::WithinRel(-0.372281f, 1e-4f));
}
SECTION("3x3 Rank Defficient Eigen") {
SKIP("Skipping this because QR decomposition isn't ready for it");
// this symmetrix tridiagonal matrix is well behaved for testing
Matrix<3, 3> A{1, 2, 3, 4, 5, 6, 7, 8, 9};
Matrix<3, 3> vectors{};
Matrix<3, 1> values{};
A.EigenQR(vectors, values, 1000000, 1e-8f);
std::string strBuf1 = "";
vectors.ToString(strBuf1);
std::cout << "Vectors:\n" << strBuf1 << std::endl;
strBuf1 = "";
values.ToString(strBuf1);
std::cout << "Values:\n" << strBuf1 << std::endl;
REQUIRE_THAT(vectors[0][0], Catch::Matchers::WithinRel(0.23197f, 1e-4f));
REQUIRE_THAT(vectors[1][0], Catch::Matchers::WithinRel(0.525322f, 1e-4f));
REQUIRE_THAT(vectors[2][0], Catch::Matchers::WithinRel(0.81867f, 1e-4f));
REQUIRE_THAT(values[0][0], Catch::Matchers::WithinRel(-1.11684f, 1e-4f));
REQUIRE_THAT(values[1][0], Catch::Matchers::WithinRel(0.0f, 1e-4f));
REQUIRE_THAT(values[2][0], Catch::Matchers::WithinRel(16.1168f, 1e-4f));
}
}

View File

@@ -8,6 +8,7 @@
// any other libraries
#include <array>
#include <cmath>
#include <cstdint>
// basically re-run all of the matrix tests with huge matrices and time the
// results.
@@ -29,13 +30,13 @@ TEST_CASE("Timing Tests", "Matrix") {
Matrix<4, 4> mat5{};
SECTION("Addition") {
for (uint32_t i{0}; i < 10000; i++) {
for (uint32_t i{0}; i < 100000; i++) {
mat3 = mat1 + mat2;
}
}
SECTION("Subtraction") {
for (uint32_t i{0}; i < 10000; i++) {
for (uint32_t i{0}; i < 100000; i++) {
mat3 = mat1 - mat2;
}
}
@@ -47,19 +48,19 @@ TEST_CASE("Timing Tests", "Matrix") {
}
SECTION("Scalar Multiplication") {
for (uint32_t i{0}; i < 10000; i++) {
for (uint32_t i{0}; i < 100000; i++) {
mat3 = mat1 * 3;
}
}
SECTION("Element Multiply") {
for (uint32_t i{0}; i < 10000; i++) {
for (uint32_t i{0}; i < 100000; i++) {
mat1.ElementMultiply(mat2, mat3);
}
}
SECTION("Element Divide") {
for (uint32_t i{0}; i < 10000; i++) {
for (uint32_t i{0}; i < 100000; i++) {
mat1.ElementDivide(mat2, mat3);
}
}
@@ -68,52 +69,59 @@ TEST_CASE("Timing Tests", "Matrix") {
// what about matrices of 0,0 or 1,1?
// minor matrix for 2x2 matrix
Matrix<49, 49> minorMat1{};
for (uint32_t i{0}; i < 10000; i++) {
for (uint32_t i{0}; i < 100000; i++) {
mat1.MinorMatrix(minorMat1, 0, 0);
}
}
SECTION("Determinant") {
for (uint32_t i{0}; i < 100000; i++) {
for (uint32_t i{0}; i < 1000000; i++) {
float det1 = mat4.Det();
}
}
SECTION("Matrix of Minors") {
for (uint32_t i{0}; i < 100000; i++) {
for (uint32_t i{0}; i < 1000000; i++) {
mat4.MatrixOfMinors(mat5);
}
}
SECTION("Invert") {
for (uint32_t i{0}; i < 100000; i++) {
for (uint32_t i{0}; i < 1000000; i++) {
mat5 = mat4.Invert();
}
};
SECTION("Transpose") {
for (uint32_t i{0}; i < 10000; i++) {
for (uint32_t i{0}; i < 100000; i++) {
mat3 = mat1.Transpose();
}
}
SECTION("Normalize") {
for (uint32_t i{0}; i < 10000; i++) {
mat1.Normalize(mat3);
for (uint32_t i{0}; i < 100000; i++) {
mat3 = mat1 / mat1.EuclideanNorm();
}
}
SECTION("GET ROW") {
Matrix<1, 50> mat1Rows{};
for (uint32_t i{0}; i < 1000000; i++) {
for (uint32_t i{0}; i < 100000000; i++) {
mat1.GetRow(0, mat1Rows);
}
}
SECTION("GET COLUMN") {
Matrix<50, 1> mat1Columns{};
for (uint32_t i{0}; i < 1000000; i++) {
for (uint32_t i{0}; i < 100000000; i++) {
mat1.GetColumn(0, mat1Columns);
}
}
SECTION("QR Decomposition") {
Matrix<50, 50> Q, R{};
for (uint32_t i{0}; i < 500; i++) {
mat1.QRDecomposition(Q, R);
}
}
}

View File

@@ -1,56 +1,36 @@
Randomness seeded to: 2310772973
0.174 s: Addition
0.174 s: Timing Tests
0.169 s: Subtraction
0.169 s: Timing Tests
1.853 s: Multiplication
1.853 s: Timing Tests
0.121 s: Scalar Multiplication
0.121 s: Timing Tests
0.177 s: Element Multiply
0.177 s: Timing Tests
0.168 s: Element Divide
0.168 s: Timing Tests
0.150 s: Minor Matrix
0.150 s: Timing Tests
0.102 s: Determinant
0.102 s: Timing Tests
0.419 s: Matrix of Minors
0.419 s: Timing Tests
0.110 s: Invert
0.110 s: Timing Tests
0.123 s: Transpose
0.123 s: Timing Tests
0.189 s: Normalize
0.189 s: Timing Tests
0.006 s: GET ROW
0.006 s: Timing Tests
0.229 s: GET COLUMN
0.229 s: Timing Tests
Running matrix-timing-tests with timing
Randomness seeded to: 3567651885
1.857 s: Addition
1.857 s: Timing Tests
1.788 s: Subtraction
1.788 s: Timing Tests
1.929 s: Multiplication
1.929 s: Timing Tests
1.268 s: Scalar Multiplication
1.268 s: Timing Tests
1.798 s: Element Multiply
1.798 s: Timing Tests
1.802 s: Element Divide
1.803 s: Timing Tests
1.553 s: Minor Matrix
1.554 s: Timing Tests
1.009 s: Determinant
1.009 s: Timing Tests
4.076 s: Matrix of Minors
4.076 s: Timing Tests
1.066 s: Invert
1.066 s: Timing Tests
1.246 s: Transpose
1.246 s: Timing Tests
2.284 s: Normalize
2.284 s: Timing Tests
0.606 s: GET ROW
0.606 s: Timing Tests
24.629 s: GET COLUMN
24.630 s: Timing Tests
3.064 s: QR Decomposition
3.064 s: Timing Tests
===============================================================================
test cases: 1 | 1 passed
assertions: - none -
Command being timed: "build/unit-tests/matrix-timing-tests -d yes"
User time (seconds): 3.98
System time (seconds): 0.00
Percent of CPU this job got: 99%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:03.99
Average shared text size (kbytes): 0
Average unshared data size (kbytes): 0
Average stack size (kbytes): 0
Average total size (kbytes): 0
Maximum resident set size (kbytes): 3200
Average resident set size (kbytes): 0
Major (requiring I/O) page faults: 184
Minor (reclaiming a frame) page faults: 172
Voluntary context switches: 1
Involuntary context switches: 10
Swaps: 0
File system inputs: 12
File system outputs: 1
Socket messages sent: 0
Socket messages received: 0
Signals delivered: 0
Page size (bytes): 4096
Exit status: 0