47 lines
1.3 KiB
Python
47 lines
1.3 KiB
Python
import numpy as np
|
|
|
|
def householder_reflection(A):
|
|
"""
|
|
Perform QR decomposition using Householder reflection.
|
|
|
|
Arguments:
|
|
A -- A matrix to be decomposed (m x n).
|
|
|
|
Returns:
|
|
Q -- Orthogonal matrix (m x m).
|
|
R -- Upper triangular matrix (m x n).
|
|
"""
|
|
A = A.astype(float) # Ensure the matrix is of type float
|
|
m, n = A.shape
|
|
Q = np.eye(m) # Initialize Q as an identity matrix
|
|
R = A.copy() # R starts as a copy of A
|
|
|
|
# Apply Householder reflections for each column
|
|
for k in range(n):
|
|
# Step 1: Compute the Householder vector
|
|
x = R[k:m, k]
|
|
e1 = np.zeros_like(x)
|
|
e1[0] = np.linalg.norm(x) if x[0] >= 0 else -np.linalg.norm(x)
|
|
v = x + e1
|
|
v = v / np.linalg.norm(v) # Normalize v
|
|
|
|
# Step 2: Apply the reflection to the matrix
|
|
R[k:m, k:n] = R[k:m, k:n] - 2 * np.outer(v, v.T @ R[k:m, k:n])
|
|
|
|
# Step 3: Apply the reflection to Q
|
|
Q[:, k:m] = Q[:, k:m] - 2 * np.outer(Q[:, k:m] @ v, v)
|
|
|
|
# The resulting Q and R are the QR decomposition
|
|
return Q, R
|
|
|
|
# Example usage
|
|
A = np.array([[12, -51, 4],
|
|
[6, 167, -68],
|
|
[-4, 24, -41]])
|
|
|
|
Q, R = householder_reflection(A)
|
|
print("Q matrix:")
|
|
print(Q)
|
|
print("\nR matrix:")
|
|
print(R)
|