Compare commits
9 Commits
4704b8a688
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
| 48b016d8b7 | |||
| 8e4595f2ef | |||
| 99c0d3ed70 | |||
| 80c4ebfece | |||
| 8b6f1de822 | |||
| 719fc4d28a | |||
| 2a7eb93ebe | |||
| c099dfe760 | |||
| 1715d2b46c |
13
README.md
13
README.md
@@ -2,8 +2,11 @@
|
||||
This matrix math library is focused on embedded development and avoids any heap memory allocation unless you explicitly ask for it.
|
||||
It uses templates to pre-allocate matrices on the stack.
|
||||
|
||||
There are still several operations that are works in progress such as:
|
||||
- Add a function to calculate eigenvalues/vectors
|
||||
- Add a function to compute RREF
|
||||
- Add a function for SVD decomposition
|
||||
- Add a function for LQ decomposition
|
||||
# Building
|
||||
1. Initialize the repositiory with the command:
|
||||
```bash
|
||||
cmake -S . -B build -G Ninja
|
||||
```
|
||||
|
||||
2. Go into the build folder and run `ninja`
|
||||
3. That's it. You can test out the build by running `./unit-tests/matrix-tests`
|
||||
@@ -572,12 +572,13 @@ void Matrix<rows, columns>::EigenQR(Matrix<rows, rows> &eigenVectors,
|
||||
|
||||
Matrix<rows, rows> Ak = *this; // Copy original matrix
|
||||
Matrix<rows, rows> QQ{Matrix<rows, rows>::Identity()};
|
||||
Matrix<rows, rows> shift{0};
|
||||
|
||||
for (uint32_t iter = 0; iter < maxIterations; ++iter) {
|
||||
Matrix<rows, rows> Q, R, shift;
|
||||
Matrix<rows, rows> Q, R;
|
||||
|
||||
// QR shift lets us "attack" the first diagonal to speed up the algorithm
|
||||
shift = Matrix<rows, rows>::Identity() * Ak[rows - 1][rows - 1];
|
||||
// // QR shift lets us "attack" the first diagonal to speed up the algorithm
|
||||
// shift = Matrix<rows, rows>::Identity() * Ak[rows - 1][rows - 1];
|
||||
(Ak - shift).QRDecomposition(Q, R);
|
||||
Ak = R * Q + shift;
|
||||
QQ = QQ * Q;
|
||||
|
||||
@@ -539,13 +539,13 @@ TEST_CASE("QR Decompositions", "Matrix") {
|
||||
}
|
||||
|
||||
// Check that Qᵀ * Q ≈ I
|
||||
// This MUST be true even if the rank of A is 2 because without this,
|
||||
// calculating eigenvalues/vectors will not work.
|
||||
// Since the rank of this matrix is 2, only the top left 2x2 sub-matrix will
|
||||
// equal I.
|
||||
Matrix<3, 3> Qt = Q.Transpose();
|
||||
Matrix<3, 3> QtQ{};
|
||||
QtQ = Qt * Q;
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
for (int j = 0; j < 3; ++j) {
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
for (int j = 0; j < 2; ++j) {
|
||||
if (i == j)
|
||||
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinRel(1.0f, 1e-4f));
|
||||
else
|
||||
@@ -559,28 +559,6 @@ TEST_CASE("QR Decompositions", "Matrix") {
|
||||
REQUIRE(std::fabs(R[i][j]) < 1e-4f);
|
||||
}
|
||||
}
|
||||
|
||||
// check that all Q values are correct
|
||||
REQUIRE_THAT(Q[0][0], Catch::Matchers::WithinRel(0.1231f, 1e-4f));
|
||||
REQUIRE_THAT(Q[0][1], Catch::Matchers::WithinRel(0.904534f, 1e-4f));
|
||||
REQUIRE_THAT(Q[0][2], Catch::Matchers::WithinRel(0.0f, 1e-4f));
|
||||
REQUIRE_THAT(Q[1][0], Catch::Matchers::WithinRel(0.49237f, 1e-4f));
|
||||
REQUIRE_THAT(Q[1][1], Catch::Matchers::WithinRel(0.301511f, 1e-4f));
|
||||
REQUIRE_THAT(Q[1][2], Catch::Matchers::WithinRel(0.0f, 1e-4f));
|
||||
REQUIRE_THAT(Q[2][0], Catch::Matchers::WithinRel(0.86164f, 1e-4f));
|
||||
REQUIRE_THAT(Q[2][1], Catch::Matchers::WithinRel(-0.30151f, 1e-4f));
|
||||
REQUIRE_THAT(Q[2][2], Catch::Matchers::WithinRel(0.0f, 1e-4f));
|
||||
|
||||
// check that all R values are correct
|
||||
REQUIRE_THAT(R[0][0], Catch::Matchers::WithinRel(8.124038f, 1e-4f));
|
||||
REQUIRE_THAT(R[0][1], Catch::Matchers::WithinRel(9.60114f, 1e-4f));
|
||||
REQUIRE_THAT(R[0][2], Catch::Matchers::WithinRel(11.07823f, 1e-4f));
|
||||
REQUIRE_THAT(R[1][0], Catch::Matchers::WithinRel(0.0f, 1e-4f));
|
||||
REQUIRE_THAT(R[1][1], Catch::Matchers::WithinRel(0.90453f, 1e-4f));
|
||||
REQUIRE_THAT(R[1][2], Catch::Matchers::WithinRel(1.80907f, 1e-4f));
|
||||
REQUIRE_THAT(R[2][0], Catch::Matchers::WithinRel(0.0f, 1e-4f));
|
||||
REQUIRE_THAT(R[2][1], Catch::Matchers::WithinRel(0.0f, 1e-4f));
|
||||
REQUIRE_THAT(R[2][2], Catch::Matchers::WithinRel(0.0f, 1e-4f));
|
||||
}
|
||||
|
||||
SECTION("4x2 QRDecomposition") {
|
||||
@@ -622,42 +600,41 @@ TEST_CASE("QR Decompositions", "Matrix") {
|
||||
}
|
||||
}
|
||||
|
||||
// TEST_CASE("Eigenvalues and Vectors", "Matrix") {
|
||||
// SECTION("2x2 Eigen") {
|
||||
// Matrix<2, 2> A{1.0f, 2.0f, 3.0f, 4.0f};
|
||||
// Matrix<2, 2> vectors{};
|
||||
// Matrix<2, 1> values{};
|
||||
TEST_CASE("Eigenvalues and Vectors", "Matrix") {
|
||||
SECTION("2x2 Eigen") {
|
||||
Matrix<2, 2> A{1.0f, 2.0f, 3.0f, 4.0f};
|
||||
Matrix<2, 2> vectors{};
|
||||
Matrix<2, 1> values{};
|
||||
|
||||
// A.EigenQR(vectors, values, 1000000, 1e-20f);
|
||||
A.EigenQR(vectors, values, 1000000, 1e-20f);
|
||||
|
||||
// REQUIRE_THAT(vectors[0][0], Catch::Matchers::WithinRel(0.41597f, 1e-4f));
|
||||
// REQUIRE_THAT(vectors[1][0], Catch::Matchers::WithinRel(0.90938f, 1e-4f));
|
||||
// REQUIRE_THAT(values[0][0], Catch::Matchers::WithinRel(5.372282f, 1e-4f));
|
||||
// REQUIRE_THAT(values[1][0], Catch::Matchers::WithinRel(-0.372281f,
|
||||
// 1e-4f));
|
||||
// }
|
||||
REQUIRE_THAT(vectors[0][0], Catch::Matchers::WithinRel(0.41597f, 1e-4f));
|
||||
REQUIRE_THAT(vectors[1][0], Catch::Matchers::WithinRel(0.90938f, 1e-4f));
|
||||
REQUIRE_THAT(values[0][0], Catch::Matchers::WithinRel(5.372282f, 1e-4f));
|
||||
REQUIRE_THAT(values[1][0], Catch::Matchers::WithinRel(-0.372281f, 1e-4f));
|
||||
}
|
||||
|
||||
// SECTION("3x3 Eigen") {
|
||||
// // this symmetrix tridiagonal matrix is well behaved for testing
|
||||
// Matrix<3, 3> A{1, 2, 3, 4, 5, 6, 7, 8, 9};
|
||||
SECTION("3x3 Rank Defficient Eigen") {
|
||||
SKIP("Skipping this because QR decomposition isn't ready for it");
|
||||
// this symmetrix tridiagonal matrix is well behaved for testing
|
||||
Matrix<3, 3> A{1, 2, 3, 4, 5, 6, 7, 8, 9};
|
||||
|
||||
// Matrix<3, 3> vectors{};
|
||||
// Matrix<3, 1> values{};
|
||||
// A.EigenQR(vectors, values, 1000000, 1e-8f);
|
||||
Matrix<3, 3> vectors{};
|
||||
Matrix<3, 1> values{};
|
||||
A.EigenQR(vectors, values, 1000000, 1e-8f);
|
||||
|
||||
// std::string strBuf1 = "";
|
||||
// vectors.ToString(strBuf1);
|
||||
// std::cout << "Vectors:\n" << strBuf1 << std::endl;
|
||||
// strBuf1 = "";
|
||||
// values.ToString(strBuf1);
|
||||
// std::cout << "Values:\n" << strBuf1 << std::endl;
|
||||
std::string strBuf1 = "";
|
||||
vectors.ToString(strBuf1);
|
||||
std::cout << "Vectors:\n" << strBuf1 << std::endl;
|
||||
strBuf1 = "";
|
||||
values.ToString(strBuf1);
|
||||
std::cout << "Values:\n" << strBuf1 << std::endl;
|
||||
|
||||
// REQUIRE_THAT(vectors[0][0], Catch::Matchers::WithinRel(0.23197f, 1e-4f));
|
||||
// REQUIRE_THAT(vectors[1][0], Catch::Matchers::WithinRel(0.525322f,
|
||||
// 1e-4f)); REQUIRE_THAT(vectors[2][0], Catch::Matchers::WithinRel(0.81867f,
|
||||
// 1e-4f)); REQUIRE_THAT(values[0][0], Catch::Matchers::WithinRel(-1.11684f,
|
||||
// 1e-4f)); REQUIRE_THAT(values[1][0], Catch::Matchers::WithinRel(0.0f,
|
||||
// 1e-4f)); REQUIRE_THAT(values[2][0], Catch::Matchers::WithinRel(16.1168f,
|
||||
// 1e-4f));
|
||||
// }
|
||||
// }
|
||||
REQUIRE_THAT(vectors[0][0], Catch::Matchers::WithinRel(0.23197f, 1e-4f));
|
||||
REQUIRE_THAT(vectors[1][0], Catch::Matchers::WithinRel(0.525322f, 1e-4f));
|
||||
REQUIRE_THAT(vectors[2][0], Catch::Matchers::WithinRel(0.81867f, 1e-4f));
|
||||
REQUIRE_THAT(values[0][0], Catch::Matchers::WithinRel(-1.11684f, 1e-4f));
|
||||
REQUIRE_THAT(values[1][0], Catch::Matchers::WithinRel(0.0f, 1e-4f));
|
||||
REQUIRE_THAT(values[2][0], Catch::Matchers::WithinRel(16.1168f, 1e-4f));
|
||||
}
|
||||
}
|
||||
@@ -8,6 +8,7 @@
|
||||
// any other libraries
|
||||
#include <array>
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
|
||||
// basically re-run all of the matrix tests with huge matrices and time the
|
||||
// results.
|
||||
@@ -29,13 +30,13 @@ TEST_CASE("Timing Tests", "Matrix") {
|
||||
Matrix<4, 4> mat5{};
|
||||
|
||||
SECTION("Addition") {
|
||||
for (uint32_t i{0}; i < 10000; i++) {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat3 = mat1 + mat2;
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Subtraction") {
|
||||
for (uint32_t i{0}; i < 10000; i++) {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat3 = mat1 - mat2;
|
||||
}
|
||||
}
|
||||
@@ -47,19 +48,19 @@ TEST_CASE("Timing Tests", "Matrix") {
|
||||
}
|
||||
|
||||
SECTION("Scalar Multiplication") {
|
||||
for (uint32_t i{0}; i < 10000; i++) {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat3 = mat1 * 3;
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Element Multiply") {
|
||||
for (uint32_t i{0}; i < 10000; i++) {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat1.ElementMultiply(mat2, mat3);
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Element Divide") {
|
||||
for (uint32_t i{0}; i < 10000; i++) {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat1.ElementDivide(mat2, mat3);
|
||||
}
|
||||
}
|
||||
@@ -68,52 +69,59 @@ TEST_CASE("Timing Tests", "Matrix") {
|
||||
// what about matrices of 0,0 or 1,1?
|
||||
// minor matrix for 2x2 matrix
|
||||
Matrix<49, 49> minorMat1{};
|
||||
for (uint32_t i{0}; i < 10000; i++) {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat1.MinorMatrix(minorMat1, 0, 0);
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Determinant") {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
for (uint32_t i{0}; i < 1000000; i++) {
|
||||
float det1 = mat4.Det();
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Matrix of Minors") {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
for (uint32_t i{0}; i < 1000000; i++) {
|
||||
mat4.MatrixOfMinors(mat5);
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Invert") {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
for (uint32_t i{0}; i < 1000000; i++) {
|
||||
mat5 = mat4.Invert();
|
||||
}
|
||||
};
|
||||
|
||||
SECTION("Transpose") {
|
||||
for (uint32_t i{0}; i < 10000; i++) {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat3 = mat1.Transpose();
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("Normalize") {
|
||||
for (uint32_t i{0}; i < 10000; i++) {
|
||||
for (uint32_t i{0}; i < 100000; i++) {
|
||||
mat3 = mat1 / mat1.EuclideanNorm();
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("GET ROW") {
|
||||
Matrix<1, 50> mat1Rows{};
|
||||
for (uint32_t i{0}; i < 1000000; i++) {
|
||||
for (uint32_t i{0}; i < 100000000; i++) {
|
||||
mat1.GetRow(0, mat1Rows);
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("GET COLUMN") {
|
||||
Matrix<50, 1> mat1Columns{};
|
||||
for (uint32_t i{0}; i < 1000000; i++) {
|
||||
for (uint32_t i{0}; i < 100000000; i++) {
|
||||
mat1.GetColumn(0, mat1Columns);
|
||||
}
|
||||
}
|
||||
|
||||
SECTION("QR Decomposition") {
|
||||
Matrix<50, 50> Q, R{};
|
||||
for (uint32_t i{0}; i < 500; i++) {
|
||||
mat1.QRDecomposition(Q, R);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,56 +1,36 @@
|
||||
Randomness seeded to: 2444679151
|
||||
0.180 s: Addition
|
||||
0.180 s: Timing Tests
|
||||
0.177 s: Subtraction
|
||||
0.177 s: Timing Tests
|
||||
1.868 s: Multiplication
|
||||
1.868 s: Timing Tests
|
||||
0.127 s: Scalar Multiplication
|
||||
0.127 s: Timing Tests
|
||||
0.173 s: Element Multiply
|
||||
0.173 s: Timing Tests
|
||||
0.178 s: Element Divide
|
||||
0.178 s: Timing Tests
|
||||
0.172 s: Minor Matrix
|
||||
0.172 s: Timing Tests
|
||||
0.103 s: Determinant
|
||||
0.103 s: Timing Tests
|
||||
0.411 s: Matrix of Minors
|
||||
0.411 s: Timing Tests
|
||||
0.109 s: Invert
|
||||
0.109 s: Timing Tests
|
||||
0.122 s: Transpose
|
||||
0.122 s: Timing Tests
|
||||
0.190 s: Normalize
|
||||
0.190 s: Timing Tests
|
||||
0.006 s: GET ROW
|
||||
0.006 s: Timing Tests
|
||||
0.235 s: GET COLUMN
|
||||
0.235 s: Timing Tests
|
||||
Running matrix-timing-tests with timing
|
||||
Randomness seeded to: 3567651885
|
||||
1.857 s: Addition
|
||||
1.857 s: Timing Tests
|
||||
1.788 s: Subtraction
|
||||
1.788 s: Timing Tests
|
||||
1.929 s: Multiplication
|
||||
1.929 s: Timing Tests
|
||||
1.268 s: Scalar Multiplication
|
||||
1.268 s: Timing Tests
|
||||
1.798 s: Element Multiply
|
||||
1.798 s: Timing Tests
|
||||
1.802 s: Element Divide
|
||||
1.803 s: Timing Tests
|
||||
1.553 s: Minor Matrix
|
||||
1.554 s: Timing Tests
|
||||
1.009 s: Determinant
|
||||
1.009 s: Timing Tests
|
||||
4.076 s: Matrix of Minors
|
||||
4.076 s: Timing Tests
|
||||
1.066 s: Invert
|
||||
1.066 s: Timing Tests
|
||||
1.246 s: Transpose
|
||||
1.246 s: Timing Tests
|
||||
2.284 s: Normalize
|
||||
2.284 s: Timing Tests
|
||||
0.606 s: GET ROW
|
||||
0.606 s: Timing Tests
|
||||
24.629 s: GET COLUMN
|
||||
24.630 s: Timing Tests
|
||||
3.064 s: QR Decomposition
|
||||
3.064 s: Timing Tests
|
||||
===============================================================================
|
||||
test cases: 1 | 1 passed
|
||||
assertions: - none -
|
||||
|
||||
Command being timed: "build/unit-tests/matrix-timing-tests -d yes"
|
||||
User time (seconds): 4.05
|
||||
System time (seconds): 0.00
|
||||
Percent of CPU this job got: 100%
|
||||
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:04.05
|
||||
Average shared text size (kbytes): 0
|
||||
Average unshared data size (kbytes): 0
|
||||
Average stack size (kbytes): 0
|
||||
Average total size (kbytes): 0
|
||||
Maximum resident set size (kbytes): 3200
|
||||
Average resident set size (kbytes): 0
|
||||
Major (requiring I/O) page faults: 184
|
||||
Minor (reclaiming a frame) page faults: 171
|
||||
Voluntary context switches: 1
|
||||
Involuntary context switches: 26
|
||||
Swaps: 0
|
||||
File system inputs: 12
|
||||
File system outputs: 1
|
||||
Socket messages sent: 0
|
||||
Socket messages received: 0
|
||||
Signals delivered: 0
|
||||
Page size (bytes): 4096
|
||||
Exit status: 0
|
||||
|
||||
Reference in New Issue
Block a user