97 lines
3.3 KiB
Java
97 lines
3.3 KiB
Java
import Graph.*;
|
|
import Vector.*;
|
|
|
|
import processing.core.PApplet;
|
|
|
|
import java.util.ArrayList;
|
|
|
|
import static processing.core.PApplet.*;
|
|
|
|
public class Ray extends Line {
|
|
float maxRayDistance = 1000;
|
|
int[] color = new int[]{255, 255, 255};
|
|
//takes the starting position of the ray, the length of the ray, and it's casting angle (radians)
|
|
Ray(Vector startPosition, float angle){
|
|
super(startPosition, startPosition.add(new Vector(cos(angle), sin(angle))));
|
|
direction = direction.mul(maxRayDistance);
|
|
}
|
|
|
|
public void drawRay(PApplet proc){
|
|
proc.stroke(color[0], color[1], color[2]);
|
|
proc.line(position.x, position.y, position.x + direction.x, position.y + direction.y);
|
|
// proc.noFill();
|
|
// proc.circle(position.x, position.y, 2*direction.mag());
|
|
// proc.fill(255);
|
|
}
|
|
|
|
|
|
|
|
//checks to see at what coordinate the ray will collide with an object and sets the ray length to meet that point.
|
|
public void castRay(PointGraph map){
|
|
float shortestWallDistance = maxRayDistance;
|
|
ArrayList<LineEdge> walls = map.getAllEdges();
|
|
for(LineEdge wall : walls){
|
|
|
|
// get the necessary vectors for two parameterized lines
|
|
// parameterized lines are of the form L = d*t + p
|
|
Vector d1 = this.direction.normalize().mul(maxRayDistance);
|
|
Vector d2 = wall.getDirection();
|
|
Vector p1 = this.position;
|
|
Vector p2 = wall.getPosition();
|
|
|
|
// calculate the parameters for the intersection t and u
|
|
float t = -(d2.x*(p2.y-p1.y) + d2.y*(p1.x-p2.x))/(d1.x*d2.y - d2.x*d1.y);
|
|
float u = -(d1.x*(p2.y-p1.y) + d1.y*(p1.x-p2.x))/(d1.x*d2.y-d2.x*d1.y);
|
|
|
|
// the lines will only be intersecting when both t and u are between 0 and 1.
|
|
if(!(0 <= t && t <= 1 && 0 <= u && u <= 1)){
|
|
continue;
|
|
}
|
|
|
|
// if the distance from the ray to the intersection is shorter than the shortestWallDistance, this is our new closest wall
|
|
float distance = d1.mul(t).add(p1).sub(this.position).mag();
|
|
if(distance < shortestWallDistance){
|
|
shortestWallDistance = distance;
|
|
}
|
|
|
|
}
|
|
|
|
// if we collided with a wall, set the ray's length to the distance from it to the collision
|
|
if(shortestWallDistance != maxRayDistance){
|
|
this.direction = this.direction.normalize().mul(shortestWallDistance);
|
|
}
|
|
else{
|
|
this.direction = this.direction.normalize().mul(maxRayDistance);
|
|
}
|
|
}
|
|
|
|
public Vector getPos(){ return this.position;}
|
|
|
|
public float getRayLength(){return this.direction.mag();}
|
|
|
|
|
|
public boolean hasCollided(){
|
|
return abs(this.direction.mag() - maxRayDistance) > 0.001;
|
|
}
|
|
|
|
//returns the absolute position of the point
|
|
public Vector getPoint(){
|
|
if(this.direction.mag() == 0){
|
|
return this.position;
|
|
}
|
|
|
|
return this.position.add(this.direction);
|
|
}
|
|
|
|
public void setPos(Vector newPosition){
|
|
this.position = newPosition;
|
|
}
|
|
|
|
public void setRayLength(int rayLength){this.direction = this.direction.normalize().mul(rayLength);}
|
|
|
|
public void setAngle(float angle){
|
|
float currentAngle = direction.angle();
|
|
this.direction = direction.rotate2D(angle - currentAngle);
|
|
}
|
|
|
|
} |