Files
SLAM-Sim/src/SLAM.java

114 lines
4.3 KiB
Java

import Vector.*;
import processing.core.*;
import java.lang.reflect.Array;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import static java.lang.Math.random;
import static processing.core.PApplet.*;
public class SLAM{
ArrayList<Line> lines = new ArrayList<>();
ArrayList<Vector> unassociatedPoints = new ArrayList<>();
private static PApplet proc;
SLAM(PApplet processing){
proc = processing;
}
/**
* @param set the set to take a sub sample of
* @param subSampleSize the size of the sub sample
* @param minAngle the minimum angle allowed in the subset
* @param maxAngle the maximum angle allowed in the subset
* @return A random subset of the set within the angle range
*/
private List<Vector> randomSampleInAngleRange(ArrayList<Vector> set, int subSampleSize, float minAngle, float maxAngle){
// create an arraylist with all points within the angle range fro mthe given set
ArrayList<Vector> pointsInAngleRange = new ArrayList<>();
for(Vector point : set){
if(minAngle <= point.z && point.z <= maxAngle){
pointsInAngleRange.add(point);
}
}
// shuffle the list to randomize it
Collections.shuffle(pointsInAngleRange);
// if the list is too small, just return the whole list
if(pointsInAngleRange.size() < subSampleSize){
return pointsInAngleRange;
}
// return a subSample of the list
return pointsInAngleRange.subList(0, subSampleSize);
}
/**
* @param randomSample a random subsampling of points from the originalList
* @param maxRange the maximum distance away from the line of best fit of the subSample of points for a given point's consensus to count.
* @param consensus the number of points that have to give their consensus for the line of best fit to count as a valid feature.
*/
private void extractFeature(List<Vector> randomSample, float maxRange, int consensus){
// get a line of best fit for this list.
Line bestFit = new Line(randomSample);
int count = 0;
ArrayList<Vector> newRandomSample = new ArrayList<>();
for (Vector v : randomSample) {
if (bestFit.getDistance(v) <= maxRange) {
count++;
newRandomSample.add(v);
}
}
// if the count is above the consensus, add the line to our list and remove the points that gave the consensus.
if (count >= consensus) {
bestFit = new Line(newRandomSample.subList(0, newRandomSample.size() - 1));
lines.add(bestFit);
// remove the associated readings from the total available readings.
for (Vector v : newRandomSample) {
this.unassociatedPoints.remove(v);
}
}
}
/**
* @param view a laser scan view
*/
public void RANSAC(View view){
unassociatedPoints.addAll(view.getPoints());
float degreeRange = radians(25/2); // range to randomly sample readings within
int numSampleReadings = 10; // number of readings to randomly sample
int consensus = 7; // the number of points that need to lie near a line for it to be considered valid.
float maxRange = 5; // the maximum distance a point can be away from the line for it to count as a consensus
// this for loop determines the maximum number of trials we're willing to do.
for(int j = 0; j < 20; j++) {
// if there aren't enough points left in the set to form a consensus, we're done.
if(this.unassociatedPoints.size() < maxRange){
break;
}
// get a random angle between -PI and PI
float randomAngle = (float) (2*PI*(random()) - 0.5);
// get a random sub sample of newPoints within the index range of a given size
List<Vector> randomSample = this.randomSampleInAngleRange(this.unassociatedPoints, numSampleReadings, randomAngle-degreeRange, randomAngle+degreeRange);
// check if the sub sample forms a valid line and remove the randomSample points if it does.
extractFeature(randomSample, maxRange, consensus);
}
}
public void drawFeatures(PApplet proc){
for(Line line : lines){
line.draw(proc);
}
}
}