Merge pull request #11 from Cynopolis/create-unit-tests-for-the-scan-matching-algorithm

Create unit tests for the scan matching algorithm
This commit is contained in:
Quinn
2023-12-09 17:17:47 -05:00
committed by GitHub
10 changed files with 589 additions and 234 deletions

2
.gitignore vendored
View File

@@ -27,3 +27,5 @@ bin/
### Mac OS ### ### Mac OS ###
.DS_Store .DS_Store
map.txt

View File

@@ -44,5 +44,8 @@
</library> </library>
</orderEntry> </orderEntry>
<orderEntry type="library" exported="" name="ejml" level="project" /> <orderEntry type="library" exported="" name="ejml" level="project" />
</component> </component>
</module> </module>

View File

@@ -52,10 +52,17 @@ public class PointGraphWriter {
file.close(); file.close();
} }
public PointGraph loadFile(String filename) throws FileNotFoundException, NumberFormatException { public PointGraph loadFile(String filename) throws NumberFormatException {
PointGraph g = new PointGraph(); PointGraph g = new PointGraph();
File file = new File(filename); File file = new File(filename);
Scanner reader = new Scanner(file); Scanner reader;
try {
reader = new Scanner(file);
}
catch (FileNotFoundException e){
System.out.println("File not found");
return g;
}
ArrayList<PointVertex> vertices = new ArrayList<>(); ArrayList<PointVertex> vertices = new ArrayList<>();
while(reader.hasNextLine()){ while(reader.hasNextLine()){
String line = reader.nextLine(); String line = reader.nextLine();

View File

@@ -79,15 +79,10 @@ public class Processing extends PApplet {
} }
if(key == 'l'){ if(key == 'l'){
System.out.println("Attempting to load a map from file"); System.out.println("Attempting to load a map from file");
try{
PointGraphWriter writer = new PointGraphWriter(); PointGraphWriter writer = new PointGraphWriter();
try {
map = writer.loadFile("map.txt"); map = writer.loadFile("map.txt");
} } catch (NumberFormatException e) {
catch (FileNotFoundException e){
System.out.println("File not found");
e.printStackTrace();
}
catch (NumberFormatException e){
System.out.println("Number format incorrect"); System.out.println("Number format incorrect");
e.printStackTrace(); e.printStackTrace();
} }

View File

@@ -10,6 +10,7 @@ import java.util.ArrayList;
public class ScanGraph extends Graph { public class ScanGraph extends Graph {
ScanPoint lastPoint; ScanPoint lastPoint;
public ScanGraph(ScanPoint startingPoint) { public ScanGraph(ScanPoint startingPoint) {
super(); super();
this.lastPoint = startingPoint; this.lastPoint = startingPoint;
@@ -24,236 +25,22 @@ public class ScanGraph extends Graph{
} }
/** /**
* @brief Get a new scan in and try to match it with all other scans in the graph
* @param newScan the scan to match * @param newScan the scan to match
* @return null if no match can be found, or an existing scan the matches the new scan. * @return null if no match can be found, or an existing scan the matches the new scan.
* @brief Get a new scan in and try to match it with all other scans in the graph
*/ */
private ScanPoint getAssociatedScan(ScanPoint newScan) { private ScanPoint getAssociatedScan(ScanPoint newScan) {
ScanMatcher matcher = new ScanMatcher(); ScanMatcher matcher = new ScanMatcher();
ScanPoint matchedScan = null;
// go through all of our available scans and try to match the new scan with the old scans. If no match can be found return null // go through all of our available scans and try to match the new scan with the old scans. If no match can be found return null
for (Vertex v : adjList.keySet()) { for (Vertex v : adjList.keySet()) {
ScanPoint referenceScan = (ScanPoint) v; ScanPoint referenceScan = (ScanPoint) v;
for(int i = 0; i < 5; i++) { matchedScan = matcher.iterativeScanMatch(referenceScan, newScan, 0.1F, 10);
// calculate the rotation and translation matrices between the new scan and the reference scan
matcher.calculateRotationAndTranslationMatrices(referenceScan, newScan);
// update the new scan with the rotation matrix and translation vector if(matchedScan != null){
newScan = matcher.applyRotationAndTranslationMatrices(newScan); break;
// calculate the error between the new scan and the reference scan
float error = matcher.getError(referenceScan, newScan);
// if the error is less than some threshold, then we have found a match
if (error < 0.1) {
return referenceScan;
} }
} }
} return matchedScan;
return null;
}
}
/**
* @brief A class to hold the correspondence matrix between two scans
* The correspondence matrix is a 3xN matrix where N is the number of valid points in the scan.
* This calculates the closest point in the old scan for each point in the new scan and gets rid of redundant closest points.
*/
class CorrespondenceMatrix{
private ArrayList<Integer> oldPointIndices = new ArrayList<>();
private ArrayList<Integer> newPointIndices = new ArrayList<>();
private ArrayList<Float> distances = new ArrayList<>();
CorrespondenceMatrix(ScanPoint newScan, ScanPoint oldScan){
this.calculateCorrespondenceMatrix(newScan, oldScan);
}
public ArrayList<Integer> getOldPointIndices(){
return this.oldPointIndices;
}
public ArrayList<Integer> getNewPointIndices(){
return this.newPointIndices;
}
public ArrayList<Float> getDistances(){
return this.distances;
}
/**
* @brief Calculate the correspondence matrix between two scans
* @param newScan the new scan
* @param referenceScan the reference scan
*/
private void calculateCorrespondenceMatrix(ScanPoint newScan, ScanPoint referenceScan){
// compute the correspondence matrix between the two scans. It is a 3xN matrix where N is the number of points in the scan
// Row 1 is the index of the point in the old scan
// Row 2 is the index of the point in the new scan
// Row 3 is the distance between the two points
// if either scan has a null point, then skip that point
// initialize the correspondence matrix as an array of array lists
ArrayList<ArrayList<Float>> correspondenceMatrix = new ArrayList<ArrayList<Float>>();
correspondenceMatrix.add(new ArrayList<Float>());
correspondenceMatrix.add(new ArrayList<Float>());
correspondenceMatrix.add(new ArrayList<Float>());
// go through all of the points in the new scan and find the closest point in the old scan
for (int newPointIndex = 0; newPointIndex < newScan.getPoints().size(); newPointIndex++) {
Vector newPoint = newScan.getPoints().get(newPointIndex);
// if the new point is null, then skip it
if (newPoint == null) {
continue;
}
// find the closest point in the old scan
float closestDistance = Float.MAX_VALUE;
int closestIndex = -1;
for (int j = 0; j < referenceScan.getPoints().size(); j++) {
Vector oldPoint = referenceScan.getPoints().get(j);
// if the old point is null, then skip it
if (oldPoint == null) {
continue;
}
float distance = newPoint.sub(oldPoint).mag();
if (distance < closestDistance) {
closestDistance = distance;
closestIndex = j;
}
}
// only add the new point if it either:
// 1. has a closest point index which does not already exist in the correspondence matrix
// 2. has a closest point index which already exists in the correspondence matrix, but the distance is smaller than the existing distance
// In case 2, we want to replace the old point with the new point
if (closestIndex != -1) {
if (correspondenceMatrix.get(0).contains((float) closestIndex)) {
int oldIndex = correspondenceMatrix.get(0).indexOf((float) closestIndex);
if (correspondenceMatrix.get(2).get(oldIndex) > closestDistance) {
correspondenceMatrix.get(0).set(oldIndex, (float) closestIndex);
correspondenceMatrix.get(1).set(oldIndex, (float) newPointIndex);
correspondenceMatrix.get(2).set(oldIndex, closestDistance);
}
} else {
correspondenceMatrix.get(0).add((float) closestIndex);
correspondenceMatrix.get(1).add((float) newPointIndex);
correspondenceMatrix.get(2).add(closestDistance);
}
}
}
}
}
class ScanMatcher{
// A 2x2 matrix describing a rotation to apply to the new scan
SimpleMatrix rotationMatrix;
// A 2x1 matrix describing a translation to apply to the new scan
SimpleMatrix translationVector;
ScanMatcher(){
}
/**
* @brief Compute the average position of the scan
* @param scan the scan to compute the average position of
* @return a 2x1 matrix containing the x,y coordinates of the average position of the scan
*/
private SimpleMatrix averageScanPosition(ScanPoint scan){
Vector averagePosition = new Vector(0, 0);
int invalidPoints = 0;
for (Vector point : scan.getPoints()) {
if (point != null) {
averagePosition = averagePosition.add(point);
}
else{
invalidPoints++;
}
}
return new SimpleMatrix(averagePosition.div(scan.getPoints().size() - invalidPoints).toArray());
}
/**
* @brief Compute the cross covariance matrix between the new scan and the reference scan
* @return a 2x2 matrix containing the cross covariance matrix
*/
private SimpleMatrix crossCovarianceMatrix(ScanPoint referenceScan, ScanPoint newScan){
Vector referenceScanAveragePosition = new Vector(averageScanPosition(referenceScan));
Vector newScanAveragePosition = new Vector(averageScanPosition(newScan));
CorrespondenceMatrix correspondenceMatrix = new CorrespondenceMatrix(newScan, referenceScan);
// compute the cross covariance matrix which is given by the formula:
// covariance = the sum from 1 to N of (p_i) * (q_i)^T
// where p_i is the ith point in the new scan and q_i is the ith point in the reference scan and N is the number of points in the scan
// the cross covariance matrix is a 2x2 matrix
float[][] crossCovarianceMatrix = new float[2][2];
for (int i = 0; i < correspondenceMatrix.getOldPointIndices().size(); i++) {
int oldIndex = correspondenceMatrix.getOldPointIndices().get(i);
int newIndex = correspondenceMatrix.getNewPointIndices().get(i);
Vector oldPoint = referenceScan.getPoints().get(oldIndex);
Vector newPoint = newScan.getPoints().get(newIndex);
if (oldPoint != null && newPoint != null) {
Vector oldPointCentered = oldPoint.sub(referenceScanAveragePosition);
Vector newPointCentered = newPoint.sub(newScanAveragePosition);
crossCovarianceMatrix[0][0] += oldPointCentered.x * newPointCentered.x;
crossCovarianceMatrix[0][1] += oldPointCentered.x * newPointCentered.y;
crossCovarianceMatrix[1][0] += oldPointCentered.y * newPointCentered.x;
crossCovarianceMatrix[1][1] += oldPointCentered.y * newPointCentered.y;
}
}
return new SimpleMatrix(crossCovarianceMatrix);
}
/**
* @brief Compute the rotation and translation matrices between the new scan and the reference scan. Then cache them as private variables.
* The rotation matrix is a 2x2 matrix and the translation vector is a 2x1 matrix
*/
public void calculateRotationAndTranslationMatrices(ScanPoint referenceScan, ScanPoint newScan){
// compute the rotation matrix which is given by the formula:
// R = V * U^T
// where V and U are the singular value decomposition of the cross covariance matrix
// the rotation matrix is a 2x2 matrix
SimpleMatrix crossCovarianceMatrixSimple = crossCovarianceMatrix(referenceScan, newScan);
SimpleSVD<SimpleMatrix> svd = crossCovarianceMatrixSimple.svd();
this.rotationMatrix = svd.getU().mult(svd.getV().transpose());
SimpleMatrix newScanAveragePosition = averageScanPosition(newScan);
SimpleMatrix referenceScanAveragePosition = averageScanPosition(referenceScan);
this.translationVector = referenceScanAveragePosition.minus(rotationMatrix.mult(newScanAveragePosition));
}
public SimpleMatrix getRotationMatrix(){
return this.rotationMatrix;
}
public SimpleMatrix getTranslationVector(){
return this.translationVector;
}
public ScanPoint applyRotationAndTranslationMatrices(ScanPoint newScan){
// apply the rotation matrix and translation vector to the new scan
for (int i = 0; i < newScan.getPoints().size(); i++) {
Vector point = newScan.getPoints().get(i);
if (point != null) {
SimpleMatrix pointMatrix = new SimpleMatrix(point.toArray());
SimpleMatrix newPointMatrix = rotationMatrix.mult(pointMatrix).plus(translationVector);
newScan.getPoints().set(i, new Vector((float) newPointMatrix.get(0), (float) newPointMatrix.get(1)));
}
}
return newScan;
}
public float getError(ScanPoint referenceScan, ScanPoint newScan){
// calculate the error between the new scan and the reference scan
// q is reference scan and p is new scan
// error is given as abs(Q_mean - R * P_mean)
// where Q_mean is the average position of the reference scan
// P_mean is the average position of the new scan
// R is the rotation matrix
SimpleMatrix newScanAveragePosition = averageScanPosition(newScan);
SimpleMatrix referenceScanAveragePosition = averageScanPosition(referenceScan);
SimpleMatrix error = referenceScanAveragePosition.minus(rotationMatrix.mult(newScanAveragePosition));
return (float) error.elementSum();
} }
} }

View File

@@ -0,0 +1,290 @@
package ScanGraph;
import Vector.Vector;
import org.ejml.simple.SimpleMatrix;
import org.ejml.simple.SimpleSVD;
import java.util.ArrayList;
import static java.lang.Math.abs;
/**
* @brief A class that can match two point scans together
*/
public class ScanMatcher{
// A 2x2 matrix describing a rotation to apply to the new scan
public SimpleMatrix rotationMatrix = null;
// A 2x1 matrix describing a translation to apply to the new scan
public SimpleMatrix translationVector = null;
public ScanMatcher(){
}
/**
* @brief iteratively calculate new rotation and transpose matrices to determien if the two scans match
* @param referenceScan the scan to be referenced
* @param newScan the scan that will be rotated and moved until it matches the reference scan
* @param iterations The number of iterations that the scan matcher will attempt
* @param errorThreshold The error threshold that the match will have to meet before considering it a valid match
*/
public ScanPoint iterativeScanMatch(ScanPoint referenceScan, ScanPoint newScan, float errorThreshold, int iterations){
// make a copy of the new scan so we don't modify the original
ScanPoint scanBeingMatched = new ScanPoint(newScan);
// calculate the rotation and translation matrices between the two scans
this.calculateRotationAndTranslationMatrices(referenceScan, scanBeingMatched);
SimpleMatrix cumulativeRotationMatrix = new SimpleMatrix(this.rotationMatrix);
SimpleMatrix cumulativeTranslationVector = new SimpleMatrix(this.translationVector);
// iterate through the scan matching algorithm
for (int i = 0; i < iterations; i++) {
// calculate the rotation and translation matrices between the two scans
this.calculateRotationAndTranslationMatrices(referenceScan, scanBeingMatched);
// apply the rotation and translation matrices to the new scan
scanBeingMatched = this.applyRotationAndTranslationMatrices(scanBeingMatched);
// calculate the error between the new scan and the reference scan
float error = this.getError(referenceScan, scanBeingMatched);
// if the error is less than the error threshold, then we have a valid match
if(error < errorThreshold){
this.rotationMatrix = cumulativeRotationMatrix;
this.translationVector = cumulativeTranslationVector;
return scanBeingMatched;
}
// otherwise, we need to keep iterating
// add the rotation and translation matrices to the cumulative rotation and translation matrices
cumulativeRotationMatrix = cumulativeRotationMatrix.mult(this.rotationMatrix);
cumulativeTranslationVector = cumulativeTranslationVector.plus(this.translationVector);
}
// if we get to this point, then we have not found a valid match
return null;
}
/**
* @brief Compute the cross covariance matrix between the new scan and the reference scan
* @return a 2x2 matrix containing the cross covariance matrix
*/
private SimpleMatrix crossCovarianceMatrix(ScanPoint referenceScan, ScanPoint newScan, CorrespondenceMatrix correspondenceMatrix){
Vector referenceScanAveragePosition = correspondenceMatrix.getAverageOldPosition();
Vector newScanAveragePosition = correspondenceMatrix.getAverageNewPosition();
// compute the cross covariance matrix which is given by the formula:
// covariance = the sum from 1 to N of (p_i) * (q_i)^T
// where p_i is the ith point in the new scan and q_i is the ith point in the reference scan and N is the number of points in the scan
// the cross covariance matrix is a 2x2 matrix
float[][] crossCovarianceMatrix = new float[2][2];
for (int i = 0; i < correspondenceMatrix.getOldPointIndices().size(); i++) {
int oldIndex = correspondenceMatrix.getOldPointIndices().get(i);
int newIndex = correspondenceMatrix.getNewPointIndices().get(i);
Vector oldPoint = referenceScan.getPoints().get(oldIndex);
Vector newPoint = newScan.getPoints().get(newIndex);
if (oldPoint != null && newPoint != null) {
Vector oldPointOffset = oldPoint.sub(referenceScanAveragePosition);
Vector newPointOffset = newPoint.sub(newScanAveragePosition);
crossCovarianceMatrix[0][0] += oldPointOffset.x * newPointOffset.x;
crossCovarianceMatrix[0][1] += oldPointOffset.x * newPointOffset.y;
crossCovarianceMatrix[1][0] += oldPointOffset.y * newPointOffset.x;
crossCovarianceMatrix[1][1] += oldPointOffset.y * newPointOffset.y;
}
}
return new SimpleMatrix(crossCovarianceMatrix);
}
/**
* @brief Compute the rotation and translation matrices between the new scan and the reference scan. Then cache them as private variables.
* The rotation matrix is a 2x2 matrix and the translation vector is a 2x1 matrix
*/
public void calculateRotationAndTranslationMatrices(ScanPoint referenceScan, ScanPoint newScan){
CorrespondenceMatrix correspondenceMatrix = new CorrespondenceMatrix(newScan, referenceScan);
// compute the rotation matrix which is given by the formula:
// R = V * U^T
// where V and U are the singular value decomposition of the cross covariance matrix
// the rotation matrix is a 2x2 matrix
SimpleMatrix crossCovarianceMatrixSimple = crossCovarianceMatrix(referenceScan, newScan, correspondenceMatrix);
SimpleSVD<SimpleMatrix> svd = crossCovarianceMatrixSimple.svd();
this.rotationMatrix = svd.getU().mult(svd.getV().transpose());
SimpleMatrix newScanAveragePosition = this.averageScanPosition(newScan);
SimpleMatrix referenceScanAveragePosition = this.averageScanPosition(referenceScan);
this.translationVector = referenceScanAveragePosition.minus(rotationMatrix.mult(newScanAveragePosition));
}
public SimpleMatrix getRotationMatrix(){
return this.rotationMatrix;
}
public SimpleMatrix getTranslationVector(){
return this.translationVector;
}
public ScanPoint applyRotationAndTranslationMatrices(ScanPoint newScan){
// copy the new scan so we don't modify the original
ScanPoint tempScan = new ScanPoint(newScan);
// apply the rotation matrix and translation vector to the new scan
for (int i = 0; i < tempScan.getPoints().size(); i++) {
Vector point = tempScan.getPoints().get(i);
if (point != null) {
SimpleMatrix pointMatrix = new SimpleMatrix(point.toArray());
SimpleMatrix newPointMatrix = rotationMatrix.mult(pointMatrix).plus(translationVector);
tempScan.getPoints().set(i, new Vector((float) newPointMatrix.get(0), (float) newPointMatrix.get(1)));
}
}
return tempScan;
}
/**
* @brief Compute the average position of the scan
* @param scan the scan to compute the average position of
* @return a 2x1 matrix containing the x,y coordinates of the average position of the scan
*/
private SimpleMatrix averageScanPosition(ScanPoint scan){
Vector averagePosition = new Vector(0, 0);
int invalidPoints = 0;
for (Vector point : scan.getPoints()) {
if (point != null) {
averagePosition = averagePosition.add(point);
}
else{
invalidPoints++;
}
}
return new SimpleMatrix(averagePosition.div(scan.getPoints().size() - invalidPoints).toArray());
}
public float getError(ScanPoint referenceScan, ScanPoint newScan){
// calculate the error between the new scan and the reference scan
// q is reference scan and p is new scan
// error is given as abs(Q_mean - R * P_mean)
// where Q_mean is the average position of the reference scan
// P_mean is the average position of the new scan
// R is the rotation matrix
SimpleMatrix newScanAveragePosition = averageScanPosition(newScan);
SimpleMatrix referenceScanAveragePosition = averageScanPosition(referenceScan);
SimpleMatrix error = referenceScanAveragePosition.minus(rotationMatrix.mult(newScanAveragePosition));
return (float) abs(error.elementSum());
}
}
/**
* @brief A class to hold the correspondence matrix between two scans
* The correspondence matrix is a 3xN matrix where N is the number of valid points in the scan.
* This calculates the closest point in the old scan for each point in the new scan and gets rid of redundant closest points.
*/
class CorrespondenceMatrix{
private ArrayList<Integer> oldPointIndices = new ArrayList<>();
private ArrayList<Integer> newPointIndices = new ArrayList<>();
private ArrayList<Float> distances = new ArrayList<>();
private Vector averageOldPosition = new Vector(0, 0);
private Vector averageNewPosition = new Vector(0, 0);
CorrespondenceMatrix(ScanPoint newScan, ScanPoint oldScan){
this.calculateCorrespondenceMatrix(newScan, oldScan);
this.calculateAveragePositions(newScan, oldScan);
}
public ArrayList<Integer> getOldPointIndices(){
return this.oldPointIndices;
}
public ArrayList<Integer> getNewPointIndices(){
return this.newPointIndices;
}
public ArrayList<Float> getDistances(){
return this.distances;
}
public Vector getAverageOldPosition(){
return this.averageOldPosition;
}
public Vector getAverageNewPosition(){
return this.averageNewPosition;
}
private void calculateAveragePositions(ScanPoint newScan, ScanPoint oldScan){
int invalidPoints = 0;
for (int i = 0; i < this.oldPointIndices.size(); i++){
int oldIndex = this.oldPointIndices.get(i);
int newIndex = this.newPointIndices.get(i);
Vector oldPoint = oldScan.getPoints().get(oldIndex);
Vector newPoint = newScan.getPoints().get(newIndex);
if (oldPoint != null && newPoint != null) {
this.averageOldPosition = this.averageOldPosition.add(oldPoint);
this.averageNewPosition = this.averageNewPosition.add(newPoint);
}
else{
invalidPoints++;
}
}
this.averageOldPosition = this.averageOldPosition.div(this.oldPointIndices.size() - invalidPoints);
this.averageNewPosition = this.averageNewPosition.div(this.newPointIndices.size() - invalidPoints);
}
/**
* @brief Calculate the correspondence matrix between two scans
* @param newScan the new scan
* @param referenceScan the reference scan
*/
private void calculateCorrespondenceMatrix(ScanPoint newScan, ScanPoint referenceScan) {
for (int newPointIndex = 0; newPointIndex < newScan.getPoints().size(); newPointIndex++) {
Vector newPoint = newScan.getPoints().get(newPointIndex);
// Skip null points in the new scan
if (newPoint == null) {
continue;
}
float closestDistance = Float.MAX_VALUE;
int closestIndex = -1;
for (int oldPointIndex = 0; oldPointIndex < referenceScan.getPoints().size(); oldPointIndex++) {
Vector oldPoint = referenceScan.getPoints().get(oldPointIndex);
// Skip null points in the old scan
if (oldPoint == null) {
continue;
}
float distance = newPoint.sub(oldPoint).mag();
if (distance < closestDistance) {
closestDistance = distance;
closestIndex = oldPointIndex;
}
}
// if we find a closest point...
if (closestIndex != -1) {
// // check if the oldPointIndex is already in the list of oldPointIndices
// if(this.oldPointIndices.contains(closestIndex)){
// int index = this.oldPointIndices.indexOf(closestIndex);
// // if the index is already in our list, then we need to check if the new point is closer than the old point
// if(this.distances.get(index) > closestDistance){
// // if the new point is closer than the old point, then we need to replace the old point with the new point
// this.oldPointIndices.set(index, closestIndex);
// this.newPointIndices.set(index, newPointIndex);
// this.distances.set(index, closestDistance);
// }
// }
// // if the index is not in our list, then we need to add it
// else{
// this.oldPointIndices.add(closestIndex);
// this.newPointIndices.add(newPointIndex);
// this.distances.add(closestDistance);
// }
this.oldPointIndices.add(closestIndex);
this.newPointIndices.add(newPointIndex);
this.distances.add(closestDistance);
}
}
}
}

View File

@@ -18,6 +18,17 @@ public class ScanPoint extends Vertex{
this.scan = scan; this.scan = scan;
} }
/**
* @brief Copy constructor
* @param other The scan point to copy
*/
public ScanPoint(ScanPoint other){
super();
this.position = new Vector(other.getPos().x, other.getPos().y);
this.orientation = other.getOrientation();
this.scan = new ArrayList<>(other.getPoints());
}
/** /**
* @return a two eleement float array containing the x and y coordinates of the vertex respectively. * @return a two eleement float array containing the x and y coordinates of the vertex respectively.
*/ */

View File

@@ -96,10 +96,18 @@ public class Vector {
return angle; return angle;
} }
/**
* @return The angle of the vector in radians
*/
public float angle(){ public float angle(){
return (float) atan2(y, x); return (float) atan2(y, x);
} }
/**
* @brief Rotate a 2D vector by a given angle
* @param angle The angle to rotate the vector by in radians
* @return The rotated vector
*/
public Vector rotate2D(float angle){ public Vector rotate2D(float angle){
float distance = mag(); float distance = mag();
float currentAngle = this.angle(); float currentAngle = this.angle();

View File

@@ -0,0 +1,123 @@
import ScanGraph.ScanMatcher;
import ScanGraph.ScanPoint;
import Vector.Vector;
import processing.core.PApplet;
import java.util.ArrayList;
public class MatcherVisualizer extends PApplet{
public static PApplet processing;
ScanPoint referenceScan;
ScanPoint scanToMatch;
ScanPoint scanBeingMatched;
public static void main(String[] args) {
PApplet.main("MatcherVisualizer");
}
public void settings(){
processing = this;
size(1000, 1000);
// generate two scans rotated by 45 degrees and append them together
Vector descriptor = new Vector(200, 200);
ScanPoint scan1 = generateScanPoint(new Vector(500, 500), descriptor, 12);
ScanPoint scan2 = generateScanPoint(new Vector(500, 500), descriptor.rotate2D((float) (6 * Math.PI / 9)), 12);
this.referenceScan = appendScanPoints(scan1, scan2);
// generate two scans offset by some amount and rotated by 55 degrees and append them together
Vector rotated = descriptor.rotate2D((float) Math.PI);
ScanPoint scan4 = generateScanPoint(new Vector(250, 300), rotated, 12);
ScanPoint scan5 = generateScanPoint(new Vector(250, 300), rotated.rotate2D((float) (6 * Math.PI / 9)), 12);
this.scanToMatch = appendScanPoints(scan4, scan5);
this.scanBeingMatched = new ScanPoint(this.scanToMatch);
}
public void draw(){
iterativeScanMatch();
// background(0);
}
/**
* @brief Generate a scan point from a scan description
* @param offset The offset of the scan point from the origin
* @param scanDescription A vector which describes the length of the line and direction of the line
* @return A scan point with the given offset and scan description
*/
public static ScanPoint generateScanPoint(Vector offset, Vector scanDescription, int numPoints){
// generate a scan point with the given offset and scan description
ArrayList<Vector> scan = new ArrayList<>();
// divide the scan description by the number of points to allow us to scale it back up in the loop
Vector directionVector = scanDescription.div(numPoints-1);
for (int i = 0; i < numPoints; i++) {
scan.add(offset.add(directionVector.mul(i)));
}
return new ScanPoint(new Vector(0, 0), 0, scan);
}
/**
* @brief Append two scan points together
* @param scan1 The first scan point to append
* @param scan2 The second scan point to append
* @return A scan point that is the combination of the two scan points
*/
public static ScanPoint appendScanPoints(ScanPoint scan1, ScanPoint scan2){
ArrayList<Vector> points = new ArrayList<>();
points.addAll(scan1.getPoints());
points.addAll(scan2.getPoints());
return new ScanPoint(new Vector(0, 0), 0, points);
}
public void delayMillis(long millis){
// get the current time
long start = System.currentTimeMillis();
long end = start + millis;
while(System.currentTimeMillis() < end){
// do nothing
}
}
/**
* @brief Draw a scan point to the screen
* @param scan The scan point to draw
* @param color The color to draw the scan point
*/
public void drawScan(ScanPoint scan, int[] color) {
processing.stroke(color[0], color[1], color[2]);
processing.fill(color[0], color[1], color[2]);
ArrayList<Vector> points = scan.getPoints();
for (int i = 0; i < points.size() - 1; i++) {
Vector point = points.get(i);
processing.ellipse(point.x, point.y, 5, 5);
}
}
public void iterativeScanMatch() {
background(0);
int[] red = {255, 0, 0};
int[] green = {0, 255, 0};
int[] blue = {0, 0, 255};
drawScan(this.referenceScan, red);
delayMillis(10);
drawScan(this.scanToMatch, green);
// do a single scan match and calculate the error
ScanMatcher matcher = new ScanMatcher();
// matcher.calculateRotationAndTranslationMatrices(this.referenceScan, this.scanBeingMatched);
this.scanBeingMatched = matcher.applyRotationAndTranslationMatrices(this.scanBeingMatched);
float singleScanMatchError = matcher.getError(this.referenceScan, this.scanBeingMatched);
float error = matcher.getError(this.referenceScan, this.scanBeingMatched);
drawScan(this.scanBeingMatched, blue);
// do an iterative scan match and calculate the error
// ScanPoint matchedScan = matcher.iterativeScanMatch(scan1, scan2, 0.01f, 10);
// float iterativeScanMatchError = matcher.getError(scan1, matchedScan);
}
}

129
tests/ScanMatcherTest.java Normal file
View File

@@ -0,0 +1,129 @@
import ScanGraph.ScanMatcher;
import ScanGraph.ScanPoint;
import org.junit.Before;
import org.junit.jupiter.api.BeforeEach;
import processing.core.PApplet;
import org.junit.jupiter.api.Test;
import Vector.Vector;
import java.util.ArrayList;
import static org.junit.jupiter.api.Assertions.*;
import static processing.core.PApplet.main;
class ScanMatcherTest{
/**
* @brief Generate a scan point from a scan description
* @param offset The offset of the scan point from the origin
* @param scanDescription A vector which describes the length of the line and direction of the line
* @return A scan point with the given offset and scan description
*/
public ScanPoint generateScanPoint(Vector offset, Vector scanDescription, int numPoints){
// generate a scan point with the given offset and scan description
ArrayList<Vector> scan = new ArrayList<>();
// divide the scan description by the number of points to allow us to scale it back up in the loop
Vector directionVector = scanDescription.div(numPoints-1);
for (int i = 0; i < numPoints; i++) {
scan.add(offset.add(directionVector.mul(i)));
}
return new ScanPoint(new Vector(0, 0), 0, scan);
}
/**
* @brief Append two scan points together
* @param scan1 The first scan point to append
* @param scan2 The second scan point to append
* @return A scan point that is the combination of the two scan points
*/
public ScanPoint appendScanPoints(ScanPoint scan1, ScanPoint scan2){
ArrayList<Vector> points = new ArrayList<>();
points.addAll(scan1.getPoints());
points.addAll(scan2.getPoints());
return new ScanPoint(new Vector(0, 0), 0, points);
}
@Test
public void applyRotationAndTranslationMatrices() {
// generate one scan that is level and another that is rotated 45 degrees.
Vector scanDescription = new Vector(10, 0);
ScanPoint referenceScan = generateScanPoint(new Vector(0, 0), scanDescription, 10);
ScanPoint newScan = generateScanPoint(new Vector(0, 0), scanDescription.rotate2D((float) Math.PI / 4), 10);
// calculate the rotation and translation matrices between the two scans
ScanMatcher matcher = new ScanMatcher();
matcher.calculateRotationAndTranslationMatrices(referenceScan, newScan);
// apply the rotation and translation matrices to the new scan
ScanPoint newScanWithRotationAndTranslation = matcher.applyRotationAndTranslationMatrices(newScan);
// Get the first and last points of the new scan with rotation and translation and calculate the angle between them
ArrayList<Vector> points = newScanWithRotationAndTranslation.getPoints();
Vector firstPoint = points.get(0);
Vector lastPoint = points.get(points.size() - 1);
Vector rotatedDirection = lastPoint.sub(firstPoint);
float angle = scanDescription.angleDiff(rotatedDirection);
// The angle between the first and last points should be zero
assertEquals(0, angle);
}
@Test
public void getError() {
// generate two scans that are the same. The error should be zero.
ScanPoint scan1 = generateScanPoint(new Vector(0, 0), new Vector(10, 10), 12);
ScanPoint scan2 = generateScanPoint(new Vector(0, 0), new Vector(10, 10), 12);
ScanMatcher matcher = new ScanMatcher();
matcher.calculateRotationAndTranslationMatrices(scan1, scan2);
assertEquals(0, matcher.getError(scan1, scan2));
// generate two scans that are the same but one is offset by 10 in the y direction. The error should be 10.
scan1 = generateScanPoint(new Vector(0, 0), new Vector(10, 10), 12);
scan2 = generateScanPoint(new Vector(0, 10), new Vector(10, 10), 12);
matcher.calculateRotationAndTranslationMatrices(scan1, scan2);
assertEquals(10, matcher.getError(scan1, scan2));
// generate two scans that are the same but one is rotated by 45 degrees. The error should be near zero.
scan1 = generateScanPoint(new Vector(0, 0), new Vector(10, 10), 12);
scan2 = generateScanPoint(new Vector(0, 0), new Vector(10, 10).rotate2D((float) Math.PI / 4), 12);
matcher.calculateRotationAndTranslationMatrices(scan1, scan2);
assertEquals(0, matcher.getError(scan1, scan2), 0.1);
}
@Test
public void iterativeScanMatch() {
float bendAngle = (float) (5 * Math.PI / 9);
// generate two scans rotated by 45 degrees and append them together
ScanPoint scan1 = generateScanPoint(new Vector(0, 0), new Vector(10, 10), 12);
ScanPoint scan2 = generateScanPoint(new Vector(0, 0), new Vector(10, 10).rotate2D(bendAngle), 12);
ScanPoint scan3 = appendScanPoints(scan1, scan2);
// generate two scans offset by some amount and rotated by 55 degrees and append them together
Vector rotated = (new Vector(10, 10)).rotate2D((float) Math.PI);
ScanPoint scan4 = generateScanPoint(new Vector(10, 10), rotated, 12);
ScanPoint scan5 = generateScanPoint(new Vector(10, 10), rotated.rotate2D(bendAngle), 12);
ScanPoint scan6 = appendScanPoints(scan4, scan5);
// do a single scan match and calculate the error
ScanMatcher matcher = new ScanMatcher();
matcher.calculateRotationAndTranslationMatrices(scan3, scan6);
ScanPoint oneCalcMatch = matcher.applyRotationAndTranslationMatrices(scan6);
float singleScanMatchError = matcher.getError(scan3, oneCalcMatch);
// do an iterative scan match and calculate the error
ScanPoint matchedScan = matcher.iterativeScanMatch(scan1, scan2, 0.0001f, 10);
// if it's null something has gone wrong with the algorithm because these scans can easily be matched.
assertNotNull(matchedScan);
float iterativeScanMatchError = matcher.getError(scan1, matchedScan);
// the iterative scan match should have a lower error than the single scan match
assertTrue(iterativeScanMatchError < singleScanMatchError);
}
}