Merge pull request #11 from Block-Party-VR/5-impliment-the-animator

Impliment the animator
This commit is contained in:
Quinn
2024-08-25 16:28:44 -04:00
committed by GitHub
10 changed files with 492 additions and 298 deletions

View File

@@ -20,7 +20,7 @@ static constexpr uint32_t BOARD_WIDTH{3};
static constexpr uint32_t BOARD_LENGTH{3};
static constexpr uint32_t BOARD_HEIGHT{3};
static constexpr V3D BOARD_DIMENSIONS{BOARD_WIDTH, BOARD_LENGTH, BOARD_HEIGHT};
static constexpr V3D<uint32_t> BOARD_DIMENSIONS{BOARD_WIDTH, BOARD_LENGTH, BOARD_HEIGHT};
// define the number of stacks
static constexpr uint32_t NUMBER_STACKS{BOARD_WIDTH * BOARD_LENGTH};

View File

@@ -3,17 +3,31 @@
#include <cstdint>
#include <cmath>
template <typename Type>
class V3D{
public:
constexpr V3D(const V3D& other):
x(other.x),
y(other.y),
z(other.z){}
z(other.z){
static_assert(std::is_arithmetic<Type>::value, "Type must be a number");
}
constexpr V3D(uint32_t x=0, uint32_t y=0, uint32_t z=0):
constexpr V3D(Type x=0, Type y=0, Type z=0):
x(x),
y(y),
z(z){}
z(z){
static_assert(std::is_arithmetic<Type>::value, "Type must be a number");
}
template <typename OtherType>
constexpr V3D(const V3D<OtherType> other):
x(static_cast<Type>(other.x)),
y(static_cast<Type>(other.y)),
z(static_cast<Type>(other.z)){
static_assert(std::is_arithmetic<Type>::value, "Type must be a number");
static_assert(std::is_arithmetic<OtherType>::value, "OtherType must be a number");
}
V3D& operator=(const V3D &other){
this->x = other.x;
@@ -36,7 +50,7 @@ class V3D{
return *this;
}
V3D& operator/=(const uint32_t scalar){
V3D& operator/=(const Type scalar){
if(scalar == 0){
return *this;
}
@@ -46,7 +60,7 @@ class V3D{
return *this;
}
V3D& operator*=(const uint32_t scalar){
V3D& operator*=(const Type scalar){
this->x *= scalar;
this->y *= scalar;
this->z *= scalar;
@@ -58,9 +72,9 @@ class V3D{
}
float magnitude(){
return std::sqrt(this->x * this->x + this->y * this->y + this->z * this-> z);
return std::sqrt(static_cast<float>(this->x * this->x + this->y * this->y + this->z * this->z));
}
uint32_t x;
uint32_t y;
uint32_t z;
Type x;
Type y;
Type z;
};

View File

@@ -0,0 +1,33 @@
#pragma once
#include "Vector3D.h"
#include <vector>
#include <chrono>
namespace ANIMATION_TYPES{
// for cube spots which aren't defined in a key frame,
// you can have the controller automatically interpolate a color
enum FillInterpolation{
NO_FILL, // if not specified, the cube color will be black
CLOSEST_COLOR, // The cube color will be the same color as the cube closest to it
LINEAR_WEIGHTED_DISTANCE, // the cube color will be an average of all specified cube colors weighted by the linear distance to this cube
SQUARE_WEIGHTED_DISTANCE // same as linear, but further colors have exponentially less impact on the color
};
enum FrameInterpolation{
SNAP, // After the delay, snap to the next key frame
FADE // over the course of the delay, fade to the next frame
};
struct Cell{
V3D<uint32_t> position;
V3D<uint32_t> color;
};
// this contains all of the information to specify exactly how a single frame should look and fade to the next frame
struct AnimationFrame{
std::vector<Cell> frame;
FillInterpolation fillInterpolation;
FrameInterpolation frameInterpolation;
std::chrono::milliseconds delay;
};
};

View File

@@ -2,68 +2,112 @@
#include <cstdint>
#include <array>
#include <vector>
#include <chrono>
#include <cstring>
#include <cmath>
#include <climits>
#include "Vector3D.h"
#include "AnimationTypes.h"
using namespace ANIMATION_TYPES;
template <const V3D<uint32_t> &BOARD_DIMS>
class Animator{
class Animation{
public:
// for cube spots which aren't defined in a key frame,
// you can have the controller automatically interpolate a color
enum FillInterpolation{
NO_FILL, // if not specified, the cube color will be black
CLOSEST_COLOR, // The cube color will be the same color as the cube closest to it
LINEAR_WEIGHTED_DISTANCE, // the cube color will be an average of all specified cube colors weighted by the linear distance to this cube
SQUARE_WEIGHTED_DISTANCE // same as linear, but further colors have exponentially less impact on the color
typedef std::array<std::array<std::array<V3D<uint32_t>, BOARD_DIMS.z>, BOARD_DIMS.y>, BOARD_DIMS.x> Frame;
void StartAnimation(const std::vector<AnimationFrame> *animationSequence);
void RunAnimation(const std::chrono::milliseconds& timePassed);
void SetLoop(bool isLooping);
Frame &GetInterpolatedFrame(){return this->interpolatedFrame;}
bool isEnabled{true};
bool interpolatedFrameHasChanged{false};
private:
bool isLooping{true};
// these are the uncompressed frames you get by following the key colors and interpolation instructions of an animation frame
Frame startFrame;
Frame interpolatedFrame;
Frame endFrame;
std::chrono::milliseconds timeElapsed;
const std::vector<AnimationFrame> *animationSequence;
uint32_t animationIndex{0};
void incrimentAnimationIndex();
void uncompressFrame(const AnimationFrame &keyFrame, Frame &frameBuffer);
void copyFrame(Frame &copyFrom, Frame &copyTo){
std::memcpy(&copyTo, &copyFrom, sizeof(Frame));
}
V3D<uint32_t> getInterpolatedColor(const AnimationFrame &keyFrame, V3D<uint32_t> position);
V3D<uint32_t> keyFrame2BoardCoords(const V3D<uint32_t> &keyFramePosition);
V3D<uint32_t> noFillInterpolate(const AnimationFrame &keyFrame, V3D<uint32_t> position);
V3D<uint32_t> closestColorInterpolate(const AnimationFrame &keyFrame, V3D<uint32_t> position);
V3D<uint32_t> linearInterpolate(const AnimationFrame &keyFrame, V3D<uint32_t> position);
V3D<uint32_t> squareInterpolate(const AnimationFrame &keyFrame, V3D<uint32_t> position);
void PrintUncompressedFrame(){
for(uint32_t x = 0; x < BOARD_DIMS.x; x++){
for(uint32_t y = 0; y < BOARD_DIMS.y; y++){
for(uint32_t z = 0; z < BOARD_DIMS.z; z++){
auto color = this->startFrame[x][y][z];
Serial.print("Cube X:" + String(x) + ",Y:" + String(y) + ",Z:" + String(z));
Serial.println("\tColor R:" + String(color.x) + ",G:" + String(color.y) + ",B:" + String(color.z));
}
}
}
}
};
enum FrameInterpolation{
SNAP, // After the delay, snap to the next key frame
FADE // over the course of the delay, fade to the next frame
};
template <const V3D<uint32_t> &BOARD_DIMS>
void Animator<BOARD_DIMS>::StartAnimation(const std::vector<AnimationFrame> *animationSequence){
struct Cell{
V3D position;
V3D color;
};
// this contains all of the information to specify exactly how a single frame should look and fade to the next frame
struct AnimationFrame{
std::vector<Cell> frame;
FillInterpolation fillInterpolation;
FrameInterpolation frameInterpolation;
std::chrono::milliseconds delay;
};
typedef std::array<std::array<std::array<V3D, Z_SIZE>, Y_SIZE>, X_SIZE> Frame;
void StartAnimation(const std::vector<AnimationFrame> &animationSequence){
this->animationSequence = animationSequence;
this->animationIndex = 0;
this->timeElapsed = std::chrono::milliseconds(0);
if(animationSequence.size() == 0){
if(animationSequence->size() == 0){
return;
}
else if(animationSequence.size() == 1){
this->uncompressFrame(animationSequence[0], this->startFrame);
this->uncompressFrame(animationSequence[0], this->endFrame);
else if(animationSequence->size() == 1){
AnimationFrame frame{((*this->animationSequence)[0])};
this->uncompressFrame(frame, this->startFrame);
this->copyFrame(this->startFrame, this->interpolatedFrame);
this->copyFrame(this->startFrame, this->endFrame);
}
else{
this->uncompressFrame(animationSequence[0], this->startFrame);
this->uncompressFrame(animationSequence[1], this->endFrame);
this->uncompressFrame((*this->animationSequence)[0], this->startFrame);
this->copyFrame(this->startFrame, this->interpolatedFrame);
this->uncompressFrame((*this->animationSequence)[1], this->endFrame);
}
this->interpolatedFrameHasChanged = true;
}
Frame &RunAnimation(std::chrono::milliseconds timePassed){
auto delayTime = this->animationSequence[this->animationIndex].delay;
template <const V3D<uint32_t> &BOARD_DIMS>
void Animator<BOARD_DIMS>::RunAnimation(const std::chrono::milliseconds& timePassed){
if(!(this->isEnabled)){
return;
}
auto delayTime = (*this->animationSequence)[this->animationIndex].delay;
this->timeElapsed += timePassed;
Frame interpolatedFrame;
// load in the next frame if we're done with this transition
if(this->timeElapsed >= delayTime){
@@ -71,61 +115,66 @@ Frame &RunAnimation(std::chrono::milliseconds timePassed){
}
// don't do frame interpolations if we're doing snap fades
if(this->animationSequence[this->animationIndex].frameInterpolation == FrameInterpolation::SNAP){
if((*this->animationSequence)[this->animationIndex].frameInterpolation == FrameInterpolation::SNAP){
return;
}
// linearly interpolate between the two uncompressed frames
for(uint32_t x = 0; x < this->X_SIZE; x++){
for(uint32_t y = 0; y < this->Y_SIZE; y++){
for(uint32_t z = 0; z < this->Z_SIZE; z++){
V3D startColor{this->startFrame[x][y][z]};
V3D endColor{this->endFrame[x][y][z]};
V3D difference{endColor - startColor};
V3D interpolatedColor = this->timeElapsed.count() * difference / delayTime.count() + startColor;
interpolatedFrame[x][y][z] = interpolatedColor;
for(uint32_t x = 0; x < BOARD_DIMS.x; x++){
for(uint32_t y = 0; y < BOARD_DIMS.y; y++){
for(uint32_t z = 0; z < BOARD_DIMS.z; z++){
V3D<float> startColor{this->startFrame[x][y][z]};
V3D<float> endColor{this->endFrame[x][y][z]};
V3D<float> difference{endColor};
difference -= startColor;
V3D<float> interpolatedColor{difference};
interpolatedColor *= this->timeElapsed.count();
interpolatedColor /= delayTime.count();
interpolatedColor += startColor;
this->interpolatedFrame[x][y][z] = interpolatedColor;
}
}
}
this->interpolatedFrameHasChanged = true;
}
void SetLoop(bool isLooping){
template <const V3D<uint32_t> &BOARD_DIMS>
void Animator<BOARD_DIMS>::SetLoop(bool isLooping){
this->isLooping = isLooping;
}
private:
uint32_t X_SIZE{3};
uint32_t Y_SIZE{3};
uint32_t Z_SIZE{3};
bool isLooping{true};
// these are the uncompressed frames you get by following the key colors and interpolation instructions of an animation frame
Frame startFrame;
Frame endFrame;
std::chrono::milliseconds timeElapsed;
const std::vector<AnimationFrame> & animationSequence;
uint32_t animationIndex{0};
void incrimentAnimationIndex(){
if(this->animationIndex < animationSequence.size() - 1){
template <const V3D<uint32_t> &BOARD_DIMS>
void Animator<BOARD_DIMS>::incrimentAnimationIndex(){
if(this->animationIndex < this->animationSequence->size() - 2){
this->animationIndex++;
this->timeElapsed = std::chrono::millis(0);
this->uncompressFrame(this->animationSequence[this->animationIndex], this->startFrame);
this->uncompressFrame(this->animationSequence[this->animationIndex + 1], this->endFrame);
this->timeElapsed = std::chrono::milliseconds(0);
this->uncompressFrame((*this->animationSequence)[this->animationIndex], this->startFrame);
this->copyFrame(this->startFrame, this->interpolatedFrame);
this->uncompressFrame((*this->animationSequence)[this->animationIndex + 1], this->endFrame);
}
else{
this->StartAnimation(this->animationSequence);
}
this->interpolatedFrameHasChanged = true;
}
void uncompressFrame(const AnimationFrame &keyFrame, Frame &frameBuffer){
for(uint32_t x = 0; x < X_SIZE; x++){
for(uint32_t y = 0; y < Y_SIZE; y++){
for(uint32_t z = 0; z < Z_SIZE; z++){
frameBuffer[x][y][z] = getInterpolatedColor(keyFrame, V3D(x, y, z));
template <const V3D<uint32_t> &BOARD_DIMS>
void Animator<BOARD_DIMS>::uncompressFrame(const AnimationFrame &keyFrame, Frame &frameBuffer){
for(uint32_t x = 0; x < BOARD_DIMS.x; x++){
for(uint32_t y = 0; y < BOARD_DIMS.y; y++){
for(uint32_t z = 0; z < BOARD_DIMS.z; z++){
frameBuffer[x][y][z] = getInterpolatedColor(keyFrame, V3D<uint32_t>(x, y, z));
}
}
}
}
V3D &getInterpolatedColor(const AnimationFrame &keyFrame, V3D position){
template <const V3D<uint32_t> &BOARD_DIMS>
V3D<uint32_t> Animator<BOARD_DIMS>::getInterpolatedColor(const AnimationFrame &keyFrame, V3D<uint32_t> position){
switch(keyFrame.fillInterpolation){
case FillInterpolation::NO_FILL:
return noFillInterpolate(keyFrame, position);
@@ -136,17 +185,19 @@ V3D &getInterpolatedColor(const AnimationFrame &keyFrame, V3D position){
case FillInterpolation::SQUARE_WEIGHTED_DISTANCE:
return squareInterpolate(keyFrame, position);
default:
return V3D{};
V3D<uint32_t> black{};
return black;
}
}
V3D &keyFrame2BoardCoords(V3D &keyFramePosition){
V3D returnValue{};
template <const V3D<uint32_t> &BOARD_DIMS>
V3D<uint32_t> Animator<BOARD_DIMS>::keyFrame2BoardCoords(const V3D<uint32_t> &keyFramePosition){
V3D<uint32_t> returnValue{};
float maxValue{static_cast<float>(std::numeric_limits<uint32_t>::max())};
// scale the key frame values down to be within board coordinates
float keyFrame_X = static_cast<float>(this->X_SIZE) * static_cast<float>(keyFramePosition.x) / maxValue;
float keyFrame_Y = static_cast<float>(this->Y_SIZE) * static_cast<float>(keyFramePosition.y) / maxValue;
float keyFrame_Z = static_cast<float>(this->Z_SIZE) * static_cast<float>(keyFramePosition.z) / maxValue;
float keyFrame_X = static_cast<float>(BOARD_DIMS.x - 1) * static_cast<float>(keyFramePosition.x) / maxValue;
float keyFrame_Y = static_cast<float>(BOARD_DIMS.y - 1) * static_cast<float>(keyFramePosition.y) / maxValue;
float keyFrame_Z = static_cast<float>(BOARD_DIMS.z - 1) * static_cast<float>(keyFramePosition.z) / maxValue;
// carefully quantize the float values back into ints with a precise rounding operation
if(keyFrame_X - std::floor(keyFrame_X) < 0.5f){
@@ -173,8 +224,9 @@ V3D &keyFrame2BoardCoords(V3D &keyFramePosition){
return returnValue;
}
V3D &noFillInterpolate(const AnimationFrame &keyFrame, V3D position){
V3D returnColor{};
template <const V3D<uint32_t> &BOARD_DIMS>
V3D<uint32_t> Animator<BOARD_DIMS>::noFillInterpolate(const AnimationFrame &keyFrame, V3D<uint32_t> position){
V3D<uint32_t> returnColor{};
for(Cell cell : keyFrame.frame){
if(keyFrame2BoardCoords(cell.position) == position){
returnColor = cell.color;
@@ -184,170 +236,58 @@ V3D &noFillInterpolate(const AnimationFrame &keyFrame, V3D position){
return returnColor;
}
V3D &closestColorInterpolate(const AnimationFrame &keyFrame, V3D position){
V3D returnColor{};
float closestDistance = (keyframe.frame[0].position - position).mag();
template <const V3D<uint32_t> &BOARD_DIMS>
V3D<uint32_t> Animator<BOARD_DIMS>::closestColorInterpolate(const AnimationFrame &keyFrame, V3D<uint32_t> cubePosition){
V3D<uint32_t> returnColor{keyFrame.frame[0].color};
V3D<uint32_t> distance{keyFrame.frame[0].position};
distance -= cubePosition;
float closestDistance = distance.magnitude();
for(Cell cell : keyFrame.frame){
float distance = (keyFrame2BoardCoords(cell.position) - position).mag();
if(distance < closestDistance){
distance = keyFrame2BoardCoords(cell.position);
distance -= cubePosition;
float euclidDistance = distance.magnitude();
if(euclidDistance < closestDistance){
returnColor = cell.color;
closestDistance = distance;
closestDistance = euclidDistance;
}
}
return returnColor;
}
V3D &linearInterpolate(const AnimationFrame &keyFrame, V3D position){
V3D returnColor{};
template <const V3D<uint32_t> &BOARD_DIMS>
V3D<uint32_t> Animator<BOARD_DIMS>::linearInterpolate(const AnimationFrame &keyFrame, V3D<uint32_t> position){
V3D<uint32_t> returnColor{};
for(Cell cell : keyFrame.frame){
uint32_t distance = static_cast<uint32_t>((keyFrame2BoardCoords(cell.position) - position).mag());
if(distance == 0) distance = 1;
returnColor = returnColor + cell.color / distance;
V3D<uint32_t> vectorDistance{keyFrame2BoardCoords(cell.position)};
vectorDistance -= position;
float distance = vectorDistance.magnitude();
if(distance == 0) return cell.color;
returnColor += cell.color;
returnColor /= distance;
}
returnColor = returnColor / keyFrame.frame.size();
returnColor /= keyFrame.frame.size();
return returnColor;
}
V3D &squareInterpolate(const AnimationFrame &keyFrame, V3D position){
V3D returnColor{};
template <const V3D<uint32_t> &BOARD_DIMS>
V3D<uint32_t> Animator<BOARD_DIMS>::squareInterpolate(const AnimationFrame &keyFrame, V3D<uint32_t> position){
V3D<uint32_t> returnColor{};
for(Cell cell : keyFrame.frame){
uint32_t distance = static_cast<uint32_t>((keyFrame2BoardCoords(cell.position) - position).mag());
V3D<uint32_t> vectorDistance{keyFrame2BoardCoords(cell.position)};
vectorDistance -= position;
uint32_t distance = static_cast<uint32_t>(vectorDistance.magnitude());
distance *= distance;
if(distance == 0) distance = 1;
returnColor = returnColor + cell.color / distance;
if(distance == 0) return cell.color;
returnColor += cell.color;
returnColor /= distance;
}
returnColor = returnColor / keyFrame.frame.size();
returnColor /= keyFrame.frame.size();
return returnColor;
}
};
// let's make some test animation frames
namespace TestFrames{
V3D red{255,0,0};
V3D green{0,255,0};
V3D blue{0,0,255};
uint32_t maxValue{std::numeric_limits<uint32_t>::max()};
Animation::Cell &CreateCell(float x_percent, float y_percent, float z_percent, V3D &color){
float continuousMaxValue{static_cast<float>(std::numeric_limits<uint32_t>::max())};
Animation::Cell cell{
.position = V3D{
static_cast<uint32_t>(continuousMaxValue*x_percent),
static_cast<uint32_t>(continuousMaxValue*y_percent),
static_cast<uint32_t>(continuousMaxValue*z_percent)
},
.color = color
};
return cell;
}
Animation::AnimationFrame noFillFrame{
.frame = {
CreateCell(0,0,0,red),
CreateCell(0.5,0.5,0.5,green),
CreateCell(1,1,1,blue)
};
.fillInterpolation = FillInterpolation::NO_FILL;
.frameInterpolation = FrameInterpolation::SNAP;
.delay = std::chrono::millis(10000);
}
Animation::AnimationFrame closestColorFrame{
.frame = {
CreateCell(0,0,0,red),
CreateCell(0.5,0.5,0.5,green),
CreateCell(1,1,1,blue)
};
.fillInterpolation = FillInterpolation::CLOSEST_COLOR;
.frameInterpolation = FrameInterpolation::SNAP;
.delay = std::chrono::millis(10000);
}
Animation::AnimationFrame linearFillFrame{
.frame = {
CreateCell(0,0,0,red),
CreateCell(0.5,0.5,0.5,green),
CreateCell(1,1,1,blue)
};
.fillInterpolation = FillInterpolation::LINEAR_WEIGHTED_DISTANCE;
.frameInterpolation = FrameInterpolation::SNAP;
.delay = std::chrono::millis(10000);
}
Animation::AnimationFrame squareFillFrame{
.frame = {
CreateCell(0,0,0,red),
CreateCell(0.5,0.5,0.5,green),
CreateCell(1,1,1,blue)
};
.fillInterpolation = FillInterpolation::SQUARE_WEIGHTED_DISTANCE;
.frameInterpolation = FrameInterpolation::SNAP;
.delay = std::chrono::millis(10000);
}
Animation::AnimationFrame noFillFadeFrame{
.frame = {
CreateCell(0,0,0,red),
CreateCell(0.5,0.5,0.5,green),
CreateCell(1,1,1,blue)
};
.fillInterpolation = FillInterpolation::NO_FILL;
.frameInterpolation = FrameInterpolation::FADE;
.delay = std::chrono::millis(10000);
}
Animation::AnimationFrame closestColorFadeFrame{
.frame = {
CreateCell(0,0,0,red),
CreateCell(0.5,0.5,0.5,green),
CreateCell(1,1,1,blue)
};
.fillInterpolation = FillInterpolation::CLOSEST_COLOR;
.frameInterpolation = FrameInterpolation::FADE;
.delay = std::chrono::millis(10000);
}
Animation::AnimationFrame linearFillFadeFrame{
.frame = {
CreateCell(0,0,0,red),
CreateCell(0.5,0.5,0.5,green),
CreateCell(1,1,1,blue)
};
.fillInterpolation = FillInterpolation::LINEAR_WEIGHTED_DISTANCE;
.frameInterpolation = FrameInterpolation::FADE;
.delay = std::chrono::millis(10000);
}
Animation::AnimationFrame squareFillFadeFrame{
.frame = {
CreateCell(0,0,0,red),
CreateCell(0.5,0.5,0.5,green),
CreateCell(1,1,1,blue)
};
.fillInterpolation = FillInterpolation::SQUARE_WEIGHTED_DISTANCE;
.frameInterpolation = FrameInterpolation::FADE;
.delay = std::chrono::millis(10000);
}
std::vector<AnimationFrame> testAnimationSequence{
noFillFrame,
closestColorFrame,
linearFillFrame,
squareFillFrame,
noFillFadeFrame,
closestFillFadeFrame,
linearFillFadeFrame,
squareFillFadeFrame
};
}
}

169
lib/Animator/TestFrames.h Normal file
View File

@@ -0,0 +1,169 @@
#pragma once
#include "AnimationTypes.h"
#include "Vector3D.h"
#include "Animator.h"
using namespace ANIMATION_TYPES;
namespace TestFrames{
V3D<uint32_t> red{255,0,0};
V3D<uint32_t> green{0,255,0};
V3D<uint32_t> blue{0,0,255};
uint32_t maxValue{std::numeric_limits<uint32_t>::max()};
Cell CreateCell(float x_percent, float y_percent, float z_percent, V3D<uint32_t> &color){
float continuousMaxValue{static_cast<float>(std::numeric_limits<uint32_t>::max())};
Cell cell{
.position = V3D<uint32_t>{
static_cast<uint32_t>(continuousMaxValue*x_percent),
static_cast<uint32_t>(continuousMaxValue*y_percent),
static_cast<uint32_t>(continuousMaxValue*z_percent)
},
.color = color
};
return cell;
}
AnimationFrame noFillFrame{
.frame = {
CreateCell(0,0,0,red),
CreateCell(0.5,0.5,0.5,green),
CreateCell(1,1,1,blue)
},
.fillInterpolation = FillInterpolation::NO_FILL,
.frameInterpolation = FrameInterpolation::SNAP,
.delay = std::chrono::milliseconds(10000)
};
AnimationFrame closestColorFrame{
.frame = {
CreateCell(0,0,0,red),
CreateCell(0.5,0.5,0.5,green),
CreateCell(1,1,1,blue)
},
.fillInterpolation = FillInterpolation::CLOSEST_COLOR,
.frameInterpolation = FrameInterpolation::SNAP,
.delay = std::chrono::milliseconds(10000)
};
AnimationFrame linearFillFrame{
.frame = {
CreateCell(0,0,0,red),
CreateCell(0.5,0.5,0.5,green),
CreateCell(1,1,1,blue)
},
.fillInterpolation = FillInterpolation::LINEAR_WEIGHTED_DISTANCE,
.frameInterpolation = FrameInterpolation::SNAP,
.delay = std::chrono::milliseconds(10000)
};
AnimationFrame squareFillFrame{
.frame = {
CreateCell(0,0,0,red),
CreateCell(0.5,0.5,0.5,green),
CreateCell(1,1,1,blue)
},
.fillInterpolation = FillInterpolation::SQUARE_WEIGHTED_DISTANCE,
.frameInterpolation = FrameInterpolation::SNAP,
.delay = std::chrono::milliseconds(10000)
};
AnimationFrame noFillFadeFrame{
.frame = {
CreateCell(0,0,0,red),
CreateCell(0.5,0.5,0.5,green),
CreateCell(1,1,1,blue)
},
.fillInterpolation = FillInterpolation::NO_FILL,
.frameInterpolation = FrameInterpolation::FADE,
.delay = std::chrono::milliseconds(10000)
};
AnimationFrame closestColorFadeFrame{
.frame = {
CreateCell(0,0,0,red),
CreateCell(0.5,0.5,0.5,green),
CreateCell(1,1,1,blue)
},
.fillInterpolation = FillInterpolation::CLOSEST_COLOR,
.frameInterpolation = FrameInterpolation::FADE,
.delay = std::chrono::milliseconds(10000)
};
AnimationFrame linearFillFadeFrame{
.frame = {
CreateCell(0,0,0,red),
CreateCell(0.5,0.5,0.5,green),
CreateCell(1,1,1,blue)
},
.fillInterpolation = FillInterpolation::LINEAR_WEIGHTED_DISTANCE,
.frameInterpolation = FrameInterpolation::FADE,
.delay = std::chrono::milliseconds(10000)
};
AnimationFrame squareFillFadeFrame{
.frame = {
CreateCell(0,0,0,red),
CreateCell(0.5,0.5,0.5,green),
CreateCell(1,1,1,blue)
},
.fillInterpolation = FillInterpolation::SQUARE_WEIGHTED_DISTANCE,
.frameInterpolation = FrameInterpolation::FADE,
.delay = std::chrono::milliseconds(10000)
};
std::vector<AnimationFrame> testAnimationSequence2{
noFillFrame, // 0
closestColorFrame, // 1
linearFillFrame, // 2
squareFillFrame, // 3
noFillFadeFrame, // 4
closestColorFadeFrame, // 5
linearFillFadeFrame, // 6
squareFillFadeFrame, // 7
noFillFrame // 8
};
AnimationFrame testFrame1{
.frame = {
CreateCell(0,0,0,red),
// CreateCell(0.5,0.5,0,green),
CreateCell(1,1,0,blue)
},
.fillInterpolation = FillInterpolation::NO_FILL,
.frameInterpolation = FrameInterpolation::FADE,
.delay = std::chrono::milliseconds(10000)
};
AnimationFrame testFrame2{
.frame = {
CreateCell(0,1,0,red),
// CreateCell(0.5,0.5,0,green),
CreateCell(1,0,0,green)
},
.fillInterpolation = FillInterpolation::NO_FILL,
.frameInterpolation = FrameInterpolation::FADE,
.delay = std::chrono::milliseconds(10000)
};
AnimationFrame testFrame3{
.frame = {
CreateCell(0.5,0.5,0,red),
// CreateCell(0.5,0.5,0,green),
CreateCell(0,1,0,blue)
},
.fillInterpolation = FillInterpolation::NO_FILL,
.frameInterpolation = FrameInterpolation::FADE,
.delay = std::chrono::milliseconds(10000)
};
std::vector<AnimationFrame> testAnimationSequence1{
testFrame1,
testFrame2,
testFrame3,
testFrame1
};
}

View File

@@ -12,13 +12,13 @@
#include "BoardTypes.h"
#include "Vector3D.h"
template <const V3D &BOARD_DIMS>
template <const V3D<uint32_t> &BOARD_DIMS>
class Board{
public:
Board() = default;
~Board() = default;
constexpr const V3D &GetSize() const{return BOARD_DIMS;}
constexpr const V3D<uint32_t> &GetSize() const{return BOARD_DIMS;}
constexpr uint32_t GetNumberCubes() const{return BOARD_DIMS.x * BOARD_DIMS.y * BOARD_DIMS.z;}
constexpr uint32_t GetMaxDimension(){return std::max(std::max(BOARD_DIMS.x, BOARD_DIMS.y), BOARD_DIMS.z);}
@@ -34,7 +34,7 @@ class Board{
* @brief fill the entire board with the given color
* @param color the color to fill the board with
*/
void FillColor(const V3D &color);
void FillColor(const V3D<uint32_t> &color);
/**
* @brief Set the color of the cube at the given position.
@@ -43,7 +43,7 @@ class Board{
* @param position the position of the cube.
* @param color the color you want the cube to be
*/
void SetCubeColor(const V3D &position, const V3D &color);
void SetCubeColor(const V3D<uint32_t> &position, const V3D<uint32_t> &color);
/**
* @brief Set the occupation status of the cube at a given position
@@ -52,7 +52,7 @@ class Board{
* @post if the new occupation status of the cube is different than
* the old occupation status, this will enable boardStateHasChanged.
*/
void SetCubeOccupation(const V3D &position, bool occupation);
void SetCubeOccupation(const V3D<uint32_t> &position, bool occupation);
/**
* @returns true if the board state has changed since this flag was last set to false
@@ -69,16 +69,26 @@ class Board{
* @brief Get a column along any axis read into the sliceBuffer
* @param column .z specifies the normal direction of the plane (see PLANE_NORMAL), and
* the x,y values specify the location of the column in that plane
* to fill. IE To fill one stack at 0,2 I would say give V3D(0,2,PLANE_NORMAL::Z)
* to fill. IE To fill one stack at 0,2 I would say give V3D<uint32_t>(0,2,PLANE_NORMAL::Z)
* @param sliceBuffer an array of pointers to the cubes along that column
* @returns the number of elements written into the slice buffer
* @note That array is stored locally and will be overwritten everytime this function is called.
* Also, any unused spots at the end of the array will be nullptrs
* @warning allocate the size of the slice buffer using GetMaxDimension if you don't know what you're doing!
*/
uint32_t SliceBoard(const V3D &column, BOARD_TYPES::Cube ** sliceBuffer);
uint32_t SliceBoard(const V3D<uint32_t> &column, BOARD_TYPES::Cube ** sliceBuffer);
void PrintEntireBoard() const;
void UpdateAllColors(const std::array<std::array<std::array<V3D<uint32_t>, BOARD_DIMS.z>, BOARD_DIMS.y>, BOARD_DIMS.x>& colorFrame){
for(uint32_t x = 0; x < BOARD_DIMS.x; x++){
for(uint32_t y = 0; y < BOARD_DIMS.y; y++){
for(uint32_t z = 0; z < BOARD_DIMS.z; z++){
this->cubes[x][y][z].color = colorFrame[x][y][z];
}
}
}
}
private:
// this is a 3d array of cubes to represent the board. Good luck visualizing it
/* _____________
@@ -96,7 +106,7 @@ class Board{
bool boardStateHasChanged;
};
template <const V3D &BOARD_DIMS>
template <const V3D<uint32_t> &BOARD_DIMS>
void Board<BOARD_DIMS>::ToStackString(String &stringBuffer) const{
std::array<uint32_t, BOARD_DIMS.x * BOARD_DIMS.y> linearizedBoard;
for(uint32_t x{0}; x < BOARD_DIMS.x; x++){
@@ -116,8 +126,8 @@ void Board<BOARD_DIMS>::ToStackString(String &stringBuffer) const{
}
}
template <const V3D &BOARD_DIMS>
void Board<BOARD_DIMS>::FillColor(const V3D &color){
template <const V3D<uint32_t> &BOARD_DIMS>
void Board<BOARD_DIMS>::FillColor(const V3D<uint32_t> &color){
for(uint32_t x{0}; x < BOARD_DIMS.x; x++){
for(uint32_t y{0}; y < BOARD_DIMS.y; y++){
for(uint32_t z{0}; z < BOARD_DIMS.z; z++){
@@ -127,23 +137,23 @@ void Board<BOARD_DIMS>::FillColor(const V3D &color){
}
}
template <const V3D &BOARD_DIMS>
void Board<BOARD_DIMS>::SetCubeColor(const V3D &position, const V3D &color){
template <const V3D<uint32_t> &BOARD_DIMS>
void Board<BOARD_DIMS>::SetCubeColor(const V3D<uint32_t> &position, const V3D<uint32_t> &color){
this->cubes[position.x][position.y][position.z].color = color;
}
template <const V3D &BOARD_DIMS>
void Board<BOARD_DIMS>::SetCubeOccupation(const V3D &position, bool occupation){
template <const V3D<uint32_t> &BOARD_DIMS>
void Board<BOARD_DIMS>::SetCubeOccupation(const V3D<uint32_t> &position, bool occupation){
bool oldOccupation{this->cubes[position.x][position.y][position.z].isOccupied};
this->cubes[position.x][position.y][position.z].isOccupied = occupation;
if(occupation != oldOccupation) this->boardStateHasChanged = true;
}
template <const V3D &BOARD_DIMS>
uint32_t Board<BOARD_DIMS>::SliceBoard(const V3D &column, BOARD_TYPES::Cube ** sliceBuffer){
template <const V3D<uint32_t> &BOARD_DIMS>
uint32_t Board<BOARD_DIMS>::SliceBoard(const V3D<uint32_t> &column, BOARD_TYPES::Cube ** sliceBuffer){
uint32_t columnLength{0};
V3D indexIncrimentVector{};
V3D indexVector{};
V3D<uint32_t> indexIncrimentVector{};
V3D<uint32_t> indexVector{};
switch(column.z){
case BOARD_TYPES::PLANE_NORMAL::X:
@@ -179,7 +189,7 @@ uint32_t Board<BOARD_DIMS>::SliceBoard(const V3D &column, BOARD_TYPES::Cube ** s
return columnLength;
}
template <const V3D &BOARD_DIMS>
template <const V3D<uint32_t> &BOARD_DIMS>
void Board<BOARD_DIMS>::PrintEntireBoard() const{
for(uint32_t x = 0; x < BOARD_DIMS.x; x++){
for(uint32_t y = 0; y < BOARD_DIMS.y; y++){

View File

@@ -129,7 +129,7 @@ void BoardDriver<NUM_STACKS>::UpdateStackLEDs(
){
this->pixelController.setPin(this->stacks[stackIndex].ledPin);
for(int i = 0; i < numCubes; i++){
V3D color{cubes[i]->color};
V3D<uint32_t> color{cubes[i]->color};
this->pixelController.setPixelColor(i*2, this->pixelController.Color(color.x, color.y, color.z));
this->pixelController.setPixelColor((i*2 + 1), this->pixelController.Color(color.x, color.y, color.z));
}

View File

@@ -7,11 +7,12 @@
#include "Board.h"
#include "BoardDriver.h"
#include "Vector3D.h"
#include "Animator.h"
template <const V3D &BOARD_DIMS>
template <const V3D<uint32_t> &BOARD_DIMS>
class BoardManager{
public:
BoardManager(BoardDriver<BOARD_WIDTH*BOARD_LENGTH> &boardDriver);
BoardManager(BoardDriver<BOARD_WIDTH*BOARD_LENGTH> &boardDriver, Animator<BOARD_DIMS> &animator);
~BoardManager() = default;
@@ -30,7 +31,7 @@ class BoardManager{
* @param position the position of the cube
* @param color the oclor you want the cube to be
*/
void SetCubeColor(const V3D &position, const V3D &color);
void SetCubeColor(const V3D<uint32_t> &position, const V3D<uint32_t> &color);
/**
* @brief Set the color of one column of cubes.
@@ -39,17 +40,17 @@ class BoardManager{
* @param column the column vector
* @param color the color you want the column to be
*/
void SetColumnColors(const V3D &column, const V3D *color, uint32_t numColors);
void SetColumnColors(const V3D<uint32_t> &column, const V3D<uint32_t> *color, uint32_t numColors);
/**
* @brief Fill a column along any axis with a color
* @param column .z specifies the normal direction of the plane (see PLANE_NORMAL), and
* the x,y values specify the location of the column in that plane
* to fill. IE To fill one stack at 0,2 I would say give V3D(0,2,PLANE_NORMAL::Z)
* to fill. IE To fill one stack at 0,2 I would say give V3D<uint32_t>(0,2,PLANE_NORMAL::Z)
* @param color the color you want to fill the column with
*/
void FillColumnColor(const V3D &column, const V3D &color);
void FillColumnColor(const V3D<uint32_t> &column, const V3D<uint32_t> &color);
/**
* @returns true if the board has changed state
@@ -66,11 +67,14 @@ class BoardManager{
*/
void Board2StackString(String& messageBuffer);
void FillColor(const V3D<uint32_t> &color){this->board.FillColor(color);}
private:
BoardDriver<BOARD_WIDTH*BOARD_LENGTH> &driver;
Board<BOARD_DIMS> board{};
Animator<BOARD_DIMS> &animator;
void updateStackColors(const V3D &column);
void updateStackColors(const V3D<uint32_t> &column);
uint32_t getColumnHeight(BOARD_TYPES::PLANE_NORMAL normal){
switch(normal){
@@ -88,32 +92,43 @@ class BoardManager{
}
}
void updateColorsFromAnimator();
};
template <const V3D<uint32_t> &BOARD_DIMS>
void BoardManager<BOARD_DIMS>::updateColorsFromAnimator(){
if(this->animator.interpolatedFrameHasChanged){
this->board.UpdateAllColors(this->animator.GetInterpolatedFrame());
this->animator.interpolatedFrameHasChanged = false;
}
}
template <const V3D &BOARD_DIMS>
BoardManager<BOARD_DIMS>::BoardManager(BoardDriver<BOARD_WIDTH*BOARD_LENGTH> &boardDriver):
driver(boardDriver){}
template <const V3D<uint32_t> &BOARD_DIMS>
BoardManager<BOARD_DIMS>::BoardManager(BoardDriver<BOARD_WIDTH*BOARD_LENGTH> &boardDriver, Animator<BOARD_DIMS> &animator):
driver(boardDriver),
animator(animator){}
template <const V3D &BOARD_DIMS>
template <const V3D<uint32_t> &BOARD_DIMS>
void BoardManager<BOARD_DIMS>::Init(){
this->driver.Init();
}
template <const V3D &BOARD_DIMS>
template <const V3D<uint32_t> &BOARD_DIMS>
void BoardManager<BOARD_DIMS>::Update(){
this->updateColorsFromAnimator();
// update the occupied cubes on the board and the cube colors
for(uint32_t x = 0; x < BOARD_DIMS.x; x++){
for(uint32_t y = 0; y < BOARD_DIMS.y; y++){
uint32_t stackIndex{y * BOARD_DIMS.x + x};
uint32_t numCubes{this->driver.GetNumberCubes(stackIndex)};
for(uint32_t z = 0; z < BOARD_DIMS.z; z++){
V3D cubePosition{x, y, z};
V3D<uint32_t> cubePosition{x, y, z};
// update the cube's occupation
this->board.SetCubeOccupation(cubePosition, z < numCubes);
}
// create the column vector for the slice direction
V3D sliceVector{x,y,BOARD_TYPES::PLANE_NORMAL::Z};
V3D<uint32_t> sliceVector{x,y,BOARD_TYPES::PLANE_NORMAL::Z};
// create a cube slice array buffer
BOARD_TYPES::Cube* sliceBuffer[BOARD_DIMS.z];
// have the board slice get read into our buffer
@@ -124,10 +139,10 @@ void BoardManager<BOARD_DIMS>::Update(){
}
}
template <const V3D &BOARD_DIMS>
void BoardManager<BOARD_DIMS>::updateStackColors(const V3D &column){
template <const V3D<uint32_t> &BOARD_DIMS>
void BoardManager<BOARD_DIMS>::updateStackColors(const V3D<uint32_t> &column){
// the only column type allowed here is z.
V3D sliceVector{column.x, column.y, BOARD_TYPES::Z};
V3D<uint32_t> sliceVector{column.x, column.y, BOARD_TYPES::Z};
// create a buffer for slice board to write the cube slice into
BOARD_TYPES::Cube * cubeSlice[BOARD_DIMS.z];
this->board.SliceBoard(column, cubeSlice);
@@ -136,15 +151,15 @@ void BoardManager<BOARD_DIMS>::updateStackColors(const V3D &column){
this->driver.UpdateStackLEDs(BOARD_DIMS.x, cubeSlice, numCubes);
}
template <const V3D &BOARD_DIMS>
void BoardManager<BOARD_DIMS>::SetCubeColor(const V3D &position, const V3D &color){
template <const V3D<uint32_t> &BOARD_DIMS>
void BoardManager<BOARD_DIMS>::SetCubeColor(const V3D<uint32_t> &position, const V3D<uint32_t> &color){
this->board.SetCubeColor(position, color);
V3D slice{position.x, position.y, BOARD_TYPES::PLANE_NORMAL::Z};
V3D<uint32_t> slice{position.x, position.y, BOARD_TYPES::PLANE_NORMAL::Z};
this->updateStackColors(slice);
}
template <const V3D &BOARD_DIMS>
void BoardManager<BOARD_DIMS>::SetColumnColors(const V3D &column, const V3D *color, uint32_t numColors){
template <const V3D<uint32_t> &BOARD_DIMS>
void BoardManager<BOARD_DIMS>::SetColumnColors(const V3D<uint32_t> &column, const V3D<uint32_t> *color, uint32_t numColors){
uint32_t columnHeight{this->getColumnHeight(static_cast<BOARD_TYPES::PLANE_NORMAL>(column.z))};
// create a cube pointer buffer and store a board slice into it
@@ -157,11 +172,11 @@ void BoardManager<BOARD_DIMS>::SetColumnColors(const V3D &column, const V3D *col
}
}
template <const V3D &BOARD_DIMS>
void BoardManager<BOARD_DIMS>::FillColumnColor(const V3D &column, const V3D &color){
template <const V3D<uint32_t> &BOARD_DIMS>
void BoardManager<BOARD_DIMS>::FillColumnColor(const V3D<uint32_t> &column, const V3D<uint32_t> &color){
uint32_t columnHeight{this->getColumnHeight(column.z)};
V3D colors[columnHeight];
V3D<uint32_t> colors[columnHeight];
for(uint32_t i = 0; i < columnHeight; i++){
colors[i] = color;
}
@@ -169,13 +184,13 @@ void BoardManager<BOARD_DIMS>::FillColumnColor(const V3D &column, const V3D &col
this->SetColumnColors(column, colors);
}
template <const V3D &BOARD_DIMS>
template <const V3D<uint32_t> &BOARD_DIMS>
bool BoardManager<BOARD_DIMS>::HasBoardChanged(){return this->board.BoardStateChanged();}
template <const V3D &BOARD_DIMS>
template <const V3D<uint32_t> &BOARD_DIMS>
void BoardManager<BOARD_DIMS>::ClearBoardChanged(){this->board.SetStateChanged(false);}
template <const V3D &BOARD_DIMS>
template <const V3D<uint32_t> &BOARD_DIMS>
void BoardManager<BOARD_DIMS>::Board2StackString(String& messageBuffer){
this->board.ToStackString(messageBuffer);
}

View File

@@ -20,7 +20,7 @@ namespace BOARD_TYPES{
};
struct Cube{
V3D color;
V3D<uint32_t> color;
bool isOccupied{false};
};
};

View File

@@ -19,6 +19,9 @@
#include "BoardDriver.h"
#include "BoardTypes.h"
#include "Animator.h"
#include "TestFrames.h"
// --------------------------------------------------
// ----------------- VARIABLES ----------------------
// --------------------------------------------------
@@ -31,8 +34,9 @@ SerialMessage<SERIAL_CHAR_LENGTH, SERIAL_ARG_LENGTH> serialMessage(&Serial);
Adafruit_NeoPixel pixelController{BOARD_HEIGHT*2, STACK1_LED_PIN, NEO_GRB + NEO_KHZ800};
Animator<BOARD_DIMENSIONS> animator{};
BoardDriver<BOARD_WIDTH*BOARD_LENGTH> boardDriver{stacks, pixelController};
BoardManager<BOARD_DIMENSIONS> boardManager{boardDriver};
BoardManager<BOARD_DIMENSIONS> boardManager{boardDriver, animator};
// --------------------------------------------------
// ----------------- FUNCTIONS ----------------------
// --------------------------------------------------
@@ -79,15 +83,15 @@ void SetStackColor(uint32_t * args, int argsLength){
uint32_t Y_COORD{(stackNum - X_COORD) / BOARD_DIMENSIONS.y};
uint32_t numColors = (argsLength - 2) / 3;
V3D colors[numColors];
V3D<uint32_t> colors[numColors];
for(int i = 0; i < numColors; i++){
uint32_t red = args[2 + (i * 3)];
uint32_t green = args[3 + (i * 3)];
uint32_t blue = args[4 + (i * 3)];
colors[i] = V3D{red, green, blue};
colors[i] = V3D<uint32_t>{red, green, blue};
}
boardManager.SetColumnColors(V3D{X_COORD, Y_COORD, BOARD_TYPES::PLANE_NORMAL::Z}, colors, numColors);
boardManager.SetColumnColors(V3D<uint32_t>{X_COORD, Y_COORD, BOARD_TYPES::PLANE_NORMAL::Z}, colors, numColors);
}
void parseData(Message<SERIAL_CHAR_LENGTH, SERIAL_ARG_LENGTH> &message){
@@ -95,26 +99,31 @@ void parseData(Message<SERIAL_CHAR_LENGTH, SERIAL_ARG_LENGTH> &message){
uint32_t argsLength{message.GetPopulatedArgs()};
uint32_t command = args[0];
switch(command){
case Commands::BoardState:
case Commands::BoardState:{
printBoardState();
break;
case Commands::PING:
}
case Commands::PING:{
GlobalPrint::Println("!" + String(Commands::PING) + ";");
break;
case Commands::SetStackColors:
}
case Commands::SetStackColors:{
GlobalPrint::Println("!2;");
// TODO: replace this with the animator
// colorManager.Enable(false);
animator.isEnabled = false;
V3D<uint32_t> black{};
boardManager.FillColor(black);
SetStackColor(reinterpret_cast<uint32_t *>(args), argsLength);
break;
case Commands::GoToIdle:
}
case Commands::GoToIdle:{
GlobalPrint::Println("!3;");
// TODO: replace this with the animator
// colorManager.Enable(true);
animator.isEnabled = true;
break;
default:
}
default:{
GlobalPrint::Println("INVALID COMMAND");
break;
}
}
// now that we have run the command we can clear the data for the next command.
@@ -148,13 +157,15 @@ void UpdateBoard(void * params){
auto updateTickRate{std::chrono::milliseconds(8)};
auto boardStateTimer{std::chrono::milliseconds(0)};
auto boardStateMaxUpdatePeriod{std::chrono::milliseconds(34)}; // this is a little slower than 30fps
unsigned long accurateTimer{millis()};
for(;;){
if(boardStateTimer >= boardStateMaxUpdatePeriod && boardManager.HasBoardChanged()){
printBoardState();
boardManager.ClearBoardChanged();
}
animator.RunAnimation(std::chrono::milliseconds(millis() - accurateTimer));
accurateTimer = millis();
boardManager.Update();
boardStateTimer += updateTickRate;
@@ -185,6 +196,8 @@ void setup() {
Serial.println("Beginning Board Initializaiton");
boardManager.Init();
animator.SetLoop(true);
animator.StartAnimation(&(TestFrames::testAnimationSequence2));
xTaskCreate(UpdateBoard, "UpdateBoard", 10000, NULL, 0, &updateBoardTask);
Serial.println("Setup Complete");