Files
Vector3D/Matrix.hpp
2024-12-10 22:42:02 -05:00

514 lines
16 KiB
C++

#pragma once
#include <array>
#include <cmath>
#include <cstdint>
#include <cstdlib>
#include <type_traits>
template <uint8_t rows, uint8_t columns> class Matrix {
public:
Matrix();
/**
* @brief Initialize a matrix with an array
*/
Matrix(const std::array<float, rows*columns> &array);
/**
* @brief Initialize a matrix directly with any number of arguments
*/
// template <typename... Args>
// Matrix(Args&&... args);
/**
* @brief Element-wise matrix addition
* @param other the other matrix to add to this one
* @param result A buffer to store the result into
* @note there is no problem if result == this
*/
void Add(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const;
/**
* @brief Element-wise subtract matrix
* @param other the other matrix to subtract from this one
* @param result A buffer to store the result into
* @note there is no problem if result == this
*/
void Subtract(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const;
/**
* @brief Matrix multiply the two matrices
* @param other the other matrix to multiply into this one
* @param result A buffer to store the result into
*/
template <uint8_t other_columns>
void Multiply(const Matrix<rows, columns> &other,
Matrix<columns, other_columns> &result) const;
/**
* @brief Multiply the matrix by a scalar
* @param scalar the the scalar to multiply by
* @param result A buffer to store the result into
* @note there is no problem if result == this
*/
void Multiply(float scalar, Matrix<rows, columns> &result) const;
/**
* @brief Invert this matrix
* @param result A buffer to store the result into
* @warning this is super slow! Only call it if you absolutely have to!!!
*/
void Invert(Matrix<rows, columns> &result) const;
/**
* @brief Transpose this matrix
* @param result A buffer to store the result into
*/
void Transpose(Matrix<columns, rows> &result) const;
/**
* @brief Square this matrix
* @param result A buffer to store the result into
*/
void Square(Matrix<rows, columns> &result) const;
/**
* @return Get the determinant of the matrix
*/
float Det() const;
/**
* @brief Calculate the eigenvalues for a square matrix
* @param result a buffer to store the result into
*/
void EigenValues(Matrix<rows, 1> &eigenvalues) const;
/**
* @brief Element-wise multiply the two matrices
* @param other the other matrix to multiply into this one
* @param result A buffer to store the result into
* @note there is no problem if result == this
*/
void ElementMultiply(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const;
/**
* @brief Element-wise divide the two matrices
* @param other the other matrix to multiply into this one
* @param result A buffer to store the result into
* @note there is no problem if result == this
*/
void ElementDivide(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const;
/**
* @brief Get an element from the matrix
* @param row the row index of the element
* @param column the column index of the element
* @return The value of the element you want to get
*/
float Get(uint8_t row_index, uint8_t column_index) const;
/**
* @brief get the specified row of the matrix returned as a reference to the
* internal array
*/
std::array<float, columns> &operator[](uint8_t row_index){
return this->matrix[row_index];
}
Matrix<rows, columns> &operator=(const Matrix<rows, columns> &other){
for(uint8_t row_idx{0}; row_idx < rows; row_idx++){
for(uint8_t column_idx{0}; column_idx < columns; column_idx++){
this->matrix[row_idx][column_idx] = other.Get(row_idx, column_idx);
}
}
}
/**
* @brief Get a row from the matrix
* @param row_index the row index to get
* @param row a buffer to write the row into
*/
void GetRow(uint8_t row_index, Matrix<1, columns> &row) const;
/**
* @brief Get a row from the matrix
* @param column_index the row index to get
* @param column a buffer to write the row into
*/
void GetColumn(uint8_t column_index, Matrix<rows, 1> &column) const;
/**
* @brief Get the number of rows in this matrix
*/
constexpr uint8_t GetRowSize() { return rows; }
/**
* @brief Get the number of columns in this matrix
*/
constexpr uint8_t GetColumnSize() { return columns; }
private:
/**
* @brief take the dot product of the two vectors
*/
template <uint8_t vector_size>
float dotProduct(const Matrix<vector_size, 1> &vec1,
const Matrix<vector_size, 1> &vec2);
/**
* @brief Set all elements in this matrix to zero
*/
void zeroMatrix();
void matrixOfMinors(Matrix<rows, columns> &result) const;
void minorMatrix(Matrix<rows - 1, columns - 1> &result, uint8_t row_idx,
uint8_t column_idx) const;
void adjugate(Matrix<rows, columns> &result) const;
/**
* @brief reduce the matrix so the sum of its elements equal 1
* @param result a buffer to store the result into
*/
void normalize(Matrix<rows, columns> &result) const;
constexpr bool isSquare() { return rows == columns; }
std::array<std::array<float, columns>, rows> matrix;
};
template <uint8_t rows, uint8_t columns> Matrix<rows, columns>::Matrix() {
this->zeroMatrix();
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns>::Matrix(const std::array<float, rows*columns> &array) {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
uint16_t array_idx =
static_cast<uint16_t>(row_idx) + static_cast<uint16_t>(column_idx);
if (array_idx < array.size()) {
this->matrix[row_idx][column_idx] = array[array_idx];
} else {
this->matrix[row_idx][column_idx] = 0;
}
}
}
}
// template <uint8_t rows, uint8_t columns>
// template <typename... Args>
// Matrix<rows, columns>::Matrix(Args&&... args){
// // Initialize a std::array with the arguments
// std::array<float, sizeof...(args)> values = {args...};
// // now call our other constructor which can take this array as an argument
// this = Matrix<rows, columns>{values};
// }
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::Add(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
result[row_idx][column_idx] = this->Get(row_idx, column_idx) + other.Get(row_idx, column_idx);
}
}
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::Subtract(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
result[row_idx][column_idx] = this->Get(row_idx, column_idx) - other.Get(row_idx, column_idx);
}
}
}
template <uint8_t rows, uint8_t columns>
template <uint8_t other_columns>
void Matrix<rows, columns>::Multiply(
const Matrix<rows, columns> &other,
Matrix<columns, other_columns> &result) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
// get our row
Matrix<rows, 1> this_row;
this->GetRow(row_idx, this_row);
// get the other matrices column
Matrix<1, columns> other_column;
other.GetColumn(column_idx, other_column);
// transpose the other matrix's column
Matrix<columns, 1> other_column_t;
other_column.Transpose(other_column_t);
// the result's index is equal to the dot product of these two vectors
result[row_idx][column_idx] =
this->dotProduct(this_row, other_column_t);
}
}
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::Multiply(float scalar,
Matrix<rows, columns> &result) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
result[row_idx][column_idx] = this->Get(row_idx, column_idx) * scalar;
}
}
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::Invert(Matrix<rows, columns> &result) const {
// since all matrix sizes have to be statically specified at compile time we
// can do this
static_assert(rows == columns,
"Your matrix isn't square and can't be inverted");
// unfortunately we can't calculate this at compile time so we'll just reurn
// zeros
if (this->Det() < 0) {
// you can't invert a matrix with a negative determinant
result.zeroMatrix();
return;
}
// TODO: This algorithm is really inneficient because of the matrix of minors.
// We should make a different algorithm how to calculate the inverse:
// https://www.mathsisfun.com/algebra/matrix-inverse-minors-cofactors-adjugate.html
// calculate the matrix of minors
Matrix<rows, columns> minors{};
this->matrixOfMinors(minors);
// now adjugate the matrix and save it in our output
minors.adjugate(result);
float determinant = this->Det();
// scale the result by 1/determinant and we have our answer
result.Multiply(1 / determinant);
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::Transpose(Matrix<columns, rows> &result) const {
for (uint8_t column_idx{0}; column_idx < rows; column_idx++) {
for (uint8_t row_idx{0}; row_idx < columns; row_idx++) {
result[row_idx][column_idx] = this->Get(column_idx, row_idx);
}
}
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::Square(Matrix<rows, columns> &result) const {
static_assert(this->isSquare(), "You can't square an non-square matrix.");
this->Multiply(this, result);
}
template <uint8_t rows, uint8_t columns>
float Matrix<rows, columns>::Det() const {
static_assert(this->isSquare(),
"You can't take the determinant of a non-square matrix.");
Matrix<1, columns> eigenValues{};
this->EigenValues(eigenValues);
float determinant{1};
for (uint8_t i{0}; i < columns; i++) {
determinant *= eigenValues.Get(0, i);
}
return determinant;
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::EigenValues(Matrix<rows, 1> &eigenvalues) const {
static_assert(rows == columns,
"Eigenvalues can only be computed for square matrices.");
// I got this code from:
// https://www.quora.com/What-is-the-C-code-for-finding-eigenvalues
Matrix<rows, 1> v{};
Matrix<rows, 1> Av{};
Matrix<rows, 1> z{};
float d = 0.0;
float d_old = 0.0;
constexpr float convergence_value{1e-6};
constexpr uint16_t max_iterations{500};
// Initialize v as a random vector
for (int i = 0; i < rows; i++) {
v[0][i] = rand() / RAND_MAX;
}
// run this loop until the eigenvalues converge or we give up
for (uint16_t k{0}; k < max_iterations; k++) {
/* Multiply A by v */
for (int i = 0; i < rows; i++) {
Av[0][i] = 0.0;
for (int j = 0; j < rows; j++) {
Av[0][i] += this->Get(0, i * rows + j) * v[0][j];
}
}
// Calculate the eigenvalue and update v
d_old = d;
d = dot_product(v, Av, rows);
for (int i = 0; i < rows; i++) {
z[0][i] = Av[0][i] - d * v[0][i];
}
z.normalize(z);
for (int i = 0; i < rows; i++) {
v[0][i] = z[0][i];
}
/* Check for convergence */
if (std::fabs(d - d_old) < convergence_value) {
eigenvalues[0][k] = d;
k++;
d = 0.0;
for (int i = 0; i < rows; i++) {
v[0][i] = rand() / RAND_MAX;
}
}
}
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::ElementMultiply(
const Matrix<rows, columns> &other, Matrix<rows, columns> &result) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
result[row_idx][column_idx] =
this->Get(row_idx, column_idx) * other.Get(row_idx, column_idx);
}
}
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::ElementDivide(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
result[row_idx][column_idx] =
this->Get(row_idx, column_idx) / other.Get(row_idx, column_idx);
}
}
}
template <uint8_t rows, uint8_t columns>
float Matrix<rows, columns>::Get(uint8_t row_index,
uint8_t column_index) const {
return this->matrix[row_index][column_index];
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::GetRow(uint8_t row_index,
Matrix<1, columns> &row) const {
row = Matrix<1, columns>(this->matrix[row_index]);
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::GetColumn(uint8_t column_index,
Matrix<rows, 1> &column) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
column[0][column_index] = this->Get(row_idx, column_index);
}
}
template <uint8_t rows, uint8_t columns>
template <uint8_t vector_size>
float Matrix<rows, columns>::dotProduct(const Matrix<vector_size, 1> &vec1,
const Matrix<vector_size, 1> &vec2) {
float sum{0};
for (uint8_t i{0}; i < vector_size; i++) {
sum += vec1.Get(i, 0) * vec2.Get(i, 0);
}
return sum;
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::zeroMatrix() {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
this->matrix[row_idx][column_idx] = 0;
}
}
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::matrixOfMinors(
Matrix<rows, columns> &result) const {
Matrix<rows - 1, columns - 1> minorMatrix{};
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
this->minorMatrix(minorMatrix, row_idx, column_idx);
result[row_idx][column_idx] = minorMatrix.Det();
}
}
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::minorMatrix(Matrix<rows - 1, columns - 1> &result,
uint8_t row_idx,
uint8_t column_idx) const {
std::array<float, (rows - 1) * (columns - 1)> subArray{};
for (uint8_t row_iter{0}; row_iter < rows; row_iter++) {
for (uint8_t column_iter{0}; column_iter < columns; column_iter++) {
uint16_t array_idx =
static_cast<uint16_t>(row_iter) + static_cast<uint16_t>(column_iter);
if (row_iter == row_idx || column_iter == column_idx) {
continue;
}
subArray[array_idx] = this->Get(row_iter, column_iter);
}
}
result = Matrix<rows - 1, columns - 1>{subArray};
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::adjugate(Matrix<rows, columns> &result) const {
for (uint8_t row_iter{0}; row_iter < rows; row_iter++) {
for (uint8_t column_iter{0}; column_iter < columns; column_iter++) {
float sign = ((row_iter + 1) % 2) == 0 ? -1 : 1;
sign *= ((column_iter + 1) % 2) == 0 ? -1 : 1;
result[row_iter][column_iter] =
this->Get(row_iter, column_iter) * sign;
}
}
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::normalize(Matrix<rows, columns> &result) const {
float sum{0};
for (uint8_t column_idx{0}; column_idx < rows; column_idx++) {
for (uint8_t row_idx{0}; row_idx < columns; row_idx++) {
sum += this->Get(row_idx, column_idx);
}
}
if (sum == 0) {
// this wouldn't do anything anyways
result.zeroMatrix();
return;
}
for (uint8_t column_idx{0}; column_idx < rows; column_idx++) {
for (uint8_t row_idx{0}; row_idx < columns; row_idx++) {
result[row_idx][column_idx] = this->Get(row_idx, column_idx) / sum;
}
}
}