Files
Vector3D/Matrix.hpp

642 lines
20 KiB
C++

#pragma once
#include <array>
#include <cmath>
#include <cstdint>
#include <cstdlib>
#include <type_traits>
template <uint8_t rows, uint8_t columns> class Matrix {
public:
/**
* @brief create a matrix but leave all of its values unitialized
*/
Matrix() = default;
/**
* @brief Create a matrix but fill all of its entries with one value
*/
Matrix(float value);
/**
* @brief Initialize a matrix with an array
*/
Matrix(const std::array<float, rows * columns> &array);
/**
* @brief Initialize a matrix as a copy of another matrix
*/
Matrix(const Matrix<rows, columns> &other);
// TODO: Figure out how to do this
/**
* @brief Initialize a matrix directly with any number of arguments
*/
// template <typename... Args>
// Matrix(Args&&... args);
/**
* @brief Set all elements in this to value
*/
void Fill(float value);
/**
* @brief Element-wise matrix addition
* @param other the other matrix to add to this one
* @param result A buffer to store the result into
* @note there is no problem if result == this
*/
Matrix<rows, columns> &Add(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const;
/**
* @brief Element-wise subtract matrix
* @param other the other matrix to subtract from this one
* @param result A buffer to store the result into
* @note there is no problem if result == this
*/
Matrix<rows, columns> &Sub(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const;
/**
* @brief Matrix multiply the two matrices
* @param other the other matrix to multiply into this one
* @param result A buffer to store the result into
*/
template <uint8_t other_columns>
Matrix<rows, columns> &Mult(const Matrix<columns, other_columns> &other,
Matrix<rows, other_columns> &result) const;
/**
* @brief Multiply the matrix by a scalar
* @param scalar the the scalar to multiply by
* @param result A buffer to store the result into
* @note there is no problem if result == this
*/
Matrix<rows, columns> &Mult(float scalar,
Matrix<rows, columns> &result) const;
/**
* @brief Square this matrix
* @param result A buffer to store the result into
*/
Matrix<rows, columns> &Square(Matrix<rows, rows> &result) const;
/**
* @brief Element-wise multiply the two matrices
* @param other the other matrix to multiply into this one
* @param result A buffer to store the result into
* @note there is no problem if result == this
*/
Matrix<rows, columns> &ElementMultiply(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const;
/**
* @brief Element-wise divide the two matrices
* @param other the other matrix to multiply into this one
* @param result A buffer to store the result into
* @note there is no problem if result == this
*/
Matrix<rows, columns> &ElementDivide(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const;
Matrix<rows - 1, columns - 1> &
MinorMatrix(Matrix<rows - 1, columns - 1> &result, uint8_t row_idx,
uint8_t column_idx) const;
/**
* @return Get the determinant of the matrix
* @note for right now only 2x2 and 3x3 matrices are supported
*/
float Det() const;
/**
* @brief Invert this matrix
* @param result A buffer to store the result into
* @warning this is super slow! Only call it if you absolutely have to!!!
*/
Matrix<rows, columns> &Invert(Matrix<rows, columns> &result) const;
/**
* @brief Transpose this matrix
* @param result A buffer to store the result into
*/
Matrix<columns, rows> &Transpose(Matrix<columns, rows> &result) const;
/**
* @brief reduce the matrix so the sum of its elements equal 1
* @param result a buffer to store the result into
*/
Matrix<rows, columns> &Normalize(Matrix<rows, columns> &result) const;
/**
* @brief Get a row from the matrix
* @param row_index the row index to get
* @param row a buffer to write the row into
*/
Matrix<1, columns> &GetRow(uint8_t row_index, Matrix<1, columns> &row) const;
/**
* @brief Get a row from the matrix
* @param column_index the row index to get
* @param column a buffer to write the row into
*/
Matrix<rows, 1> &GetColumn(uint8_t column_index,
Matrix<rows, 1> &column) const;
/**
* @brief Get the number of rows in this matrix
*/
constexpr uint8_t GetRowSize() { return rows; }
/**
* @brief Get the number of columns in this matrix
*/
constexpr uint8_t GetColumnSize() { return columns; }
void ToString(std::string &stringBuffer) const;
/**
* @brief Get an element from the matrix
* @param row the row index of the element
* @param column the column index of the element
* @return The value of the element you want to get
*/
float Get(uint8_t row_index, uint8_t column_index) const;
/**
* @brief get the specified row of the matrix returned as a reference to the
* internal array
*/
std::array<float, columns> &operator[](uint8_t row_index);
/**
* @brief Copy the contents of other into this matrix
*/
Matrix<rows, columns> &operator=(const Matrix<rows, columns> &other);
/**
* @brief Return a new matrix that is the sum of this matrix and other matrix
*/
Matrix<rows, columns> operator+(const Matrix<rows, columns> &other) const;
Matrix<rows, columns> operator-(const Matrix<rows, columns> &other) const;
Matrix<rows, columns> operator*(const Matrix<rows, columns> &other) const;
Matrix<rows, columns> operator*(float scalar) const;
private:
/**
* @brief take the dot product of the two vectors
*/
template <uint8_t vector_size>
static float dotProduct(const Matrix<1, vector_size> &vec1,
const Matrix<1, vector_size> &vec2);
template <uint8_t vector_size>
static float dotProduct(const Matrix<vector_size, 1> &vec1,
const Matrix<vector_size, 1> &vec2);
Matrix<rows, columns> &matrixOfMinors(Matrix<rows, columns> &result) const;
Matrix<rows, columns> &adjugate(Matrix<rows, columns> &result) const;
void setMatrixToArray(const std::array<float, rows * columns> &array);
std::array<std::array<float, columns>, rows> matrix;
};
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::setMatrixToArray(
const std::array<float, rows * columns> &array) {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
uint16_t array_idx =
static_cast<uint16_t>(row_idx) * static_cast<uint16_t>(columns) +
static_cast<uint16_t>(column_idx);
if (array_idx < array.size()) {
this->matrix[row_idx][column_idx] = array[array_idx];
} else {
this->matrix[row_idx][column_idx] = 0;
}
}
}
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns>::Matrix(float value) {
this->Fill(value);
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns>::Matrix(const std::array<float, rows * columns> &array) {
this->setMatrixToArray(array);
}
// template <uint8_t rows, uint8_t columns>
// template <typename... Args>
// Matrix<rows, columns>::Matrix(Args&&... args){
// // Initialize a std::array with the arguments
// if(typeid(args) == typeid(std::array<float, 4>)){
// this->setMatrixToArray(args);
// }
// else{
// std::array<float, rows*columns> values = {static_cast<float>(args)...};
// // now store the array in our internal matrix
// this->setMatrixToArray(values);
// }
// }
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns>::Matrix(const Matrix<rows, columns> &other) {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
this->matrix[row_idx][column_idx] = other.Get(row_idx, column_idx);
}
}
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::Add(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
result[row_idx][column_idx] =
this->Get(row_idx, column_idx) + other.Get(row_idx, column_idx);
}
}
return result;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::Sub(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
result[row_idx][column_idx] =
this->Get(row_idx, column_idx) - other.Get(row_idx, column_idx);
}
}
return result;
}
template <uint8_t rows, uint8_t columns>
template <uint8_t other_columns>
Matrix<rows, columns> &
Matrix<rows, columns>::Mult(const Matrix<columns, other_columns> &other,
Matrix<rows, other_columns> &result) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
// get our row
Matrix<1, columns> this_row;
this->GetRow(row_idx, this_row);
// get the other matrices column
Matrix<rows, 1> other_column;
other.GetColumn(column_idx, other_column);
// transpose the other matrix's column
Matrix<1, rows> other_column_t;
other_column.Transpose(other_column_t);
// the result's index is equal to the dot product of these two vectors
result[row_idx][column_idx] =
Matrix<rows, columns>::dotProduct(this_row, other_column_t);
}
}
return result;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::Mult(float scalar, Matrix<rows, columns> &result) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
result[row_idx][column_idx] = this->Get(row_idx, column_idx) * scalar;
}
}
return result;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::Invert(Matrix<rows, columns> &result) const {
// since all matrix sizes have to be statically specified at compile time we
// can do this
static_assert(rows == columns,
"Your matrix isn't square and can't be inverted");
// unfortunately we can't calculate this at compile time so we'll just reurn
// zeros
float determinant{this->Det()};
if (determinant < 0) {
// you can't invert a matrix with a negative determinant
result.Fill(0);
return result;
}
// TODO: This algorithm is really inneficient because of the matrix of minors.
// We should make a different algorithm how to calculate the inverse:
// https://www.mathsisfun.com/algebra/matrix-inverse-minors-cofactors-adjugate.html
// calculate the matrix of minors
Matrix<rows, columns> minors{};
this->matrixOfMinors(minors);
// now adjugate the matrix and save it in our output
minors.adjugate(result);
// scale the result by 1/determinant and we have our answer
result.Mult(1 / determinant, result);
return result;
}
template <uint8_t rows, uint8_t columns>
Matrix<columns, rows> &
Matrix<rows, columns>::Transpose(Matrix<columns, rows> &result) const {
for (uint8_t column_idx{0}; column_idx < rows; column_idx++) {
for (uint8_t row_idx{0}; row_idx < columns; row_idx++) {
result[row_idx][column_idx] = this->Get(column_idx, row_idx);
}
}
return result;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::Square(Matrix<rows, rows> &result) const {
// TODO: Because template requirements are checked before static_assert, this
// never throws an error and fails at the Mult call instead.
static_assert(rows == columns, "You can't square a non-square matrix.");
this->Mult(*this, result);
return result;
}
// explicitly define the determinant for a 2x2 matrix because it is definitely
// the fastest way to calculate a 2x2 matrix determinant
template <> float Matrix<2, 2>::Det() const {
return this->matrix[0][0] * this->matrix[1][1] -
this->matrix[0][1] * this->matrix[1][0];
}
template <uint8_t rows, uint8_t columns>
float Matrix<rows, columns>::Det() const {
static_assert(rows == columns,
"You can't take the determinant of a non-square matrix.");
Matrix<rows - 1, columns - 1> MinorMatrix{};
float determinant{0};
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
// for odd indices the sign is negative
float sign = (column_idx % 2 == 0) ? 1 : -1;
determinant += sign * this->matrix[0][column_idx] *
this->MinorMatrix(MinorMatrix, 0, column_idx).Det();
}
return determinant;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::ElementMultiply(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
result[row_idx][column_idx] =
this->Get(row_idx, column_idx) * other.Get(row_idx, column_idx);
}
}
return result;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::ElementDivide(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
result[row_idx][column_idx] =
this->Get(row_idx, column_idx) / other.Get(row_idx, column_idx);
}
}
return result;
}
template <uint8_t rows, uint8_t columns>
float Matrix<rows, columns>::Get(uint8_t row_index,
uint8_t column_index) const {
if (row_index > rows - 1 || column_index > columns - 1) {
return 0; // TODO: We should throw something here instead of failing quietly
}
return this->matrix[row_index][column_index];
}
template <uint8_t rows, uint8_t columns>
Matrix<1, columns> &
Matrix<rows, columns>::GetRow(uint8_t row_index,
Matrix<1, columns> &row) const {
row = Matrix<1, columns>(this->matrix[row_index]);
return row;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, 1> &
Matrix<rows, columns>::GetColumn(uint8_t column_index,
Matrix<rows, 1> &column) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
column[row_idx][0] = this->Get(row_idx, column_index);
}
return column;
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::ToString(std::string &stringBuffer) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
stringBuffer += "|";
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
stringBuffer += std::to_string(this->matrix[row_idx][column_idx]);
if (column_idx != columns - 1) {
stringBuffer += "\t";
}
}
stringBuffer += "|\n";
}
}
template <uint8_t rows, uint8_t columns>
std::array<float, columns> &Matrix<rows, columns>::
operator[](uint8_t row_index) {
if (row_index > rows - 1) {
return this->matrix[0]; // TODO: We should throw something here instead of
// failing quietly.
}
return this->matrix[row_index];
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &Matrix<rows, columns>::
operator=(const Matrix<rows, columns> &other) {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
this->matrix[row_idx][column_idx] = other.Get(row_idx, column_idx);
}
}
// return a reference to ourselves so you can chain together these functions
return *this;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> Matrix<rows, columns>::
operator+(const Matrix<rows, columns> &other) const {
Matrix<rows, columns> buffer{};
this->Add(other, buffer);
return buffer;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> Matrix<rows, columns>::
operator-(const Matrix<rows, columns> &other) const {
Matrix<rows, columns> buffer{};
this->Sub(other, buffer);
return buffer;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> Matrix<rows, columns>::
operator*(const Matrix<rows, columns> &other) const {
Matrix<rows, columns> buffer{};
this->Mult(other, buffer);
return buffer;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> Matrix<rows, columns>::operator*(float scalar) const {
Matrix<rows, columns> buffer{};
this->Mult(scalar, buffer);
return buffer;
}
template <uint8_t rows, uint8_t columns>
template <uint8_t vector_size>
float Matrix<rows, columns>::dotProduct(const Matrix<1, vector_size> &vec1,
const Matrix<1, vector_size> &vec2) {
float sum{0};
for (uint8_t i{0}; i < vector_size; i++) {
sum += vec1.Get(0, i) * vec2.Get(0, i);
}
return sum;
}
template <uint8_t rows, uint8_t columns>
template <uint8_t vector_size>
float Matrix<rows, columns>::dotProduct(const Matrix<vector_size, 1> &vec1,
const Matrix<vector_size, 1> &vec2) {
float sum{0};
for (uint8_t i{0}; i < vector_size; i++) {
sum += vec1.Get(i, 0) * vec2.Get(i, 0);
}
return sum;
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::Fill(float value) {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
this->matrix[row_idx][column_idx] = value;
}
}
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::matrixOfMinors(Matrix<rows, columns> &result) const {
Matrix<rows - 1, columns - 1> MinorMatrix{};
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
this->MinorMatrix(MinorMatrix, row_idx, column_idx);
result[row_idx][column_idx] = MinorMatrix.Det();
}
}
return result;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows - 1, columns - 1> &
Matrix<rows, columns>::MinorMatrix(Matrix<rows - 1, columns - 1> &result,
uint8_t row_idx, uint8_t column_idx) const {
std::array<float, (rows - 1) * (columns - 1)> subArray{};
uint16_t array_idx{0};
for (uint8_t row_iter{0}; row_iter < rows; row_iter++) {
if (row_iter == row_idx) {
continue;
}
for (uint8_t column_iter{0}; column_iter < columns; column_iter++) {
if (column_iter == column_idx) {
continue;
}
subArray[array_idx] = this->Get(row_iter, column_iter);
array_idx++;
}
}
result = Matrix<rows - 1, columns - 1>{subArray};
return result;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::adjugate(Matrix<rows, columns> &result) const {
for (uint8_t row_iter{0}; row_iter < rows; row_iter++) {
for (uint8_t column_iter{0}; column_iter < columns; column_iter++) {
float sign = ((row_iter + 1) % 2) == 0 ? -1 : 1;
sign *= ((column_iter + 1) % 2) == 0 ? -1 : 1;
result[row_iter][column_iter] = this->Get(row_iter, column_iter) * sign;
}
}
return result;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::Normalize(Matrix<rows, columns> &result) const {
float sum{0};
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
float val{this->Get(row_idx, column_idx)};
sum += val * val;
}
}
if (sum == 0) {
// this wouldn't do anything anyways
result.Fill(0);
return result;
}
sum = sqrt(sum);
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
result[row_idx][column_idx] = this->Get(row_idx, column_idx) / sum;
}
}
return result;
}