545 lines
17 KiB
C++
545 lines
17 KiB
C++
#pragma once
|
|
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
#include <cstdlib>
|
|
#include <type_traits>
|
|
|
|
template <uint8_t rows, uint8_t columns> class Matrix {
|
|
public:
|
|
Matrix();
|
|
|
|
/**
|
|
* @brief Initialize a matrix with an array
|
|
*/
|
|
Matrix(const std::array<float, rows*columns> &array);
|
|
|
|
// TODO: Figure out how to do this
|
|
/**
|
|
* @brief Initialize a matrix directly with any number of arguments
|
|
*/
|
|
// template <typename... Args>
|
|
// Matrix(Args&&... args);
|
|
|
|
/**
|
|
* @brief Element-wise matrix addition
|
|
* @param other the other matrix to add to this one
|
|
* @param result A buffer to store the result into
|
|
* @note there is no problem if result == this
|
|
*/
|
|
void Add(const Matrix<rows, columns> &other,
|
|
Matrix<rows, columns> &result) const;
|
|
|
|
/**
|
|
* @brief Element-wise subtract matrix
|
|
* @param other the other matrix to subtract from this one
|
|
* @param result A buffer to store the result into
|
|
* @note there is no problem if result == this
|
|
*/
|
|
void Subtract(const Matrix<rows, columns> &other,
|
|
Matrix<rows, columns> &result) const;
|
|
|
|
/**
|
|
* @brief Matrix multiply the two matrices
|
|
* @param other the other matrix to multiply into this one
|
|
* @param result A buffer to store the result into
|
|
*/
|
|
template <uint8_t other_columns>
|
|
void Multiply(const Matrix<rows, columns> &other,
|
|
Matrix<columns, other_columns> &result) const;
|
|
|
|
/**
|
|
* @brief Multiply the matrix by a scalar
|
|
* @param scalar the the scalar to multiply by
|
|
* @param result A buffer to store the result into
|
|
* @note there is no problem if result == this
|
|
*/
|
|
void Multiply(float scalar, Matrix<rows, columns> &result) const;
|
|
|
|
/**
|
|
* @brief Invert this matrix
|
|
* @param result A buffer to store the result into
|
|
* @warning this is super slow! Only call it if you absolutely have to!!!
|
|
*/
|
|
void Invert(Matrix<rows, columns> &result) const;
|
|
|
|
/**
|
|
* @brief Transpose this matrix
|
|
* @param result A buffer to store the result into
|
|
*/
|
|
void Transpose(Matrix<columns, rows> &result) const;
|
|
|
|
/**
|
|
* @brief Square this matrix
|
|
* @param result A buffer to store the result into
|
|
*/
|
|
void Square(Matrix<rows, columns> &result) const;
|
|
|
|
/**
|
|
* @return Get the determinant of the matrix
|
|
*/
|
|
float Det() const;
|
|
|
|
/**
|
|
* @brief Calculate the eigenvalues for a square matrix
|
|
* @param result a buffer to store the result into
|
|
*/
|
|
void EigenValues(Matrix<rows, 1> &eigenvalues) const;
|
|
|
|
/**
|
|
* @brief Element-wise multiply the two matrices
|
|
* @param other the other matrix to multiply into this one
|
|
* @param result A buffer to store the result into
|
|
* @note there is no problem if result == this
|
|
*/
|
|
void ElementMultiply(const Matrix<rows, columns> &other,
|
|
Matrix<rows, columns> &result) const;
|
|
|
|
/**
|
|
* @brief Element-wise divide the two matrices
|
|
* @param other the other matrix to multiply into this one
|
|
* @param result A buffer to store the result into
|
|
* @note there is no problem if result == this
|
|
*/
|
|
void ElementDivide(const Matrix<rows, columns> &other,
|
|
Matrix<rows, columns> &result) const;
|
|
|
|
/**
|
|
* @brief Get an element from the matrix
|
|
* @param row the row index of the element
|
|
* @param column the column index of the element
|
|
* @return The value of the element you want to get
|
|
*/
|
|
float Get(uint8_t row_index, uint8_t column_index) const;
|
|
|
|
/**
|
|
* @brief get the specified row of the matrix returned as a reference to the
|
|
* internal array
|
|
*/
|
|
std::array<float, columns> &operator[](uint8_t row_index){
|
|
return this->matrix[row_index];
|
|
}
|
|
|
|
Matrix<rows, columns> &operator=(const Matrix<rows, columns> &other){
|
|
for(uint8_t row_idx{0}; row_idx < rows; row_idx++){
|
|
for(uint8_t column_idx{0}; column_idx < columns; column_idx++){
|
|
this->matrix[row_idx][column_idx] = other.Get(row_idx, column_idx);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Get a row from the matrix
|
|
* @param row_index the row index to get
|
|
* @param row a buffer to write the row into
|
|
*/
|
|
void GetRow(uint8_t row_index, Matrix<1, columns> &row) const;
|
|
|
|
/**
|
|
* @brief Get a row from the matrix
|
|
* @param column_index the row index to get
|
|
* @param column a buffer to write the row into
|
|
*/
|
|
void GetColumn(uint8_t column_index, Matrix<rows, 1> &column) const;
|
|
|
|
/**
|
|
* @brief Get the number of rows in this matrix
|
|
*/
|
|
constexpr uint8_t GetRowSize() { return rows; }
|
|
|
|
/**
|
|
* @brief Get the number of columns in this matrix
|
|
*/
|
|
constexpr uint8_t GetColumnSize() { return columns; }
|
|
|
|
void ToString(std::string & stringBuffer) const;
|
|
|
|
private:
|
|
/**
|
|
* @brief take the dot product of the two vectors
|
|
*/
|
|
template <uint8_t vector_size>
|
|
float dotProduct(const Matrix<vector_size, 1> &vec1,
|
|
const Matrix<vector_size, 1> &vec2);
|
|
|
|
/**
|
|
* @brief Set all elements in this matrix to zero
|
|
*/
|
|
void zeroMatrix();
|
|
|
|
void matrixOfMinors(Matrix<rows, columns> &result) const;
|
|
|
|
void minorMatrix(Matrix<rows - 1, columns - 1> &result, uint8_t row_idx,
|
|
uint8_t column_idx) const;
|
|
|
|
void adjugate(Matrix<rows, columns> &result) const;
|
|
|
|
/**
|
|
* @brief reduce the matrix so the sum of its elements equal 1
|
|
* @param result a buffer to store the result into
|
|
*/
|
|
void normalize(Matrix<rows, columns> &result) const;
|
|
|
|
constexpr bool isSquare() { return rows == columns; }
|
|
|
|
void setMatrixToArray(const std::array<float, rows*columns> & array);
|
|
|
|
std::array<std::array<float, columns>, rows> matrix;
|
|
};
|
|
|
|
template <uint8_t rows, uint8_t columns>
|
|
void Matrix<rows, columns>::setMatrixToArray(const std::array<float, rows*columns> & array){
|
|
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
|
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
|
uint16_t array_idx =
|
|
static_cast<uint16_t>(row_idx) * static_cast<uint16_t>(columns) + static_cast<uint16_t>(column_idx);
|
|
if (array_idx < array.size()) {
|
|
this->matrix[row_idx][column_idx] = array[array_idx];
|
|
} else {
|
|
this->matrix[row_idx][column_idx] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <uint8_t rows, uint8_t columns> Matrix<rows, columns>::Matrix() {
|
|
this->zeroMatrix();
|
|
}
|
|
|
|
template <uint8_t rows, uint8_t columns>
|
|
Matrix<rows, columns>::Matrix(const std::array<float, rows*columns> &array) {
|
|
this->setMatrixToArray(array);
|
|
}
|
|
|
|
// template <uint8_t rows, uint8_t columns>
|
|
// template <typename... Args>
|
|
// Matrix<rows, columns>::Matrix(Args&&... args){
|
|
|
|
// // Initialize a std::array with the arguments
|
|
// if(typeid(args) == typeid(std::array<float, 4>)){
|
|
// this->setMatrixToArray(args);
|
|
// }
|
|
// else{
|
|
// std::array<float, rows*columns> values = {static_cast<float>(args)...};
|
|
|
|
// // now store the array in our internal matrix
|
|
// this->setMatrixToArray(values);
|
|
// }
|
|
|
|
// }
|
|
|
|
template <uint8_t rows, uint8_t columns>
|
|
void Matrix<rows, columns>::Add(const Matrix<rows, columns> &other,
|
|
Matrix<rows, columns> &result) const {
|
|
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
|
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
|
result[row_idx][column_idx] = this->Get(row_idx, column_idx) + other.Get(row_idx, column_idx);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <uint8_t rows, uint8_t columns>
|
|
void Matrix<rows, columns>::Subtract(const Matrix<rows, columns> &other,
|
|
Matrix<rows, columns> &result) const {
|
|
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
|
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
|
result[row_idx][column_idx] = this->Get(row_idx, column_idx) - other.Get(row_idx, column_idx);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <uint8_t rows, uint8_t columns>
|
|
template <uint8_t other_columns>
|
|
void Matrix<rows, columns>::Multiply(
|
|
const Matrix<rows, columns> &other,
|
|
Matrix<columns, other_columns> &result) const {
|
|
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
|
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
|
// get our row
|
|
Matrix<rows, 1> this_row;
|
|
this->GetRow(row_idx, this_row);
|
|
// get the other matrices column
|
|
Matrix<1, columns> other_column;
|
|
other.GetColumn(column_idx, other_column);
|
|
// transpose the other matrix's column
|
|
Matrix<columns, 1> other_column_t;
|
|
other_column.Transpose(other_column_t);
|
|
|
|
// the result's index is equal to the dot product of these two vectors
|
|
result[row_idx][column_idx] =
|
|
this->dotProduct(this_row, other_column_t);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <uint8_t rows, uint8_t columns>
|
|
void Matrix<rows, columns>::Multiply(float scalar,
|
|
Matrix<rows, columns> &result) const {
|
|
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
|
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
|
result[row_idx][column_idx] = this->Get(row_idx, column_idx) * scalar;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <uint8_t rows, uint8_t columns>
|
|
void Matrix<rows, columns>::Invert(Matrix<rows, columns> &result) const {
|
|
// since all matrix sizes have to be statically specified at compile time we
|
|
// can do this
|
|
static_assert(rows == columns,
|
|
"Your matrix isn't square and can't be inverted");
|
|
|
|
// unfortunately we can't calculate this at compile time so we'll just reurn
|
|
// zeros
|
|
if (this->Det() < 0) {
|
|
// you can't invert a matrix with a negative determinant
|
|
result.zeroMatrix();
|
|
return;
|
|
}
|
|
|
|
// TODO: This algorithm is really inneficient because of the matrix of minors.
|
|
// We should make a different algorithm how to calculate the inverse:
|
|
// https://www.mathsisfun.com/algebra/matrix-inverse-minors-cofactors-adjugate.html
|
|
|
|
// calculate the matrix of minors
|
|
Matrix<rows, columns> minors{};
|
|
this->matrixOfMinors(minors);
|
|
|
|
// now adjugate the matrix and save it in our output
|
|
minors.adjugate(result);
|
|
float determinant = this->Det();
|
|
|
|
// scale the result by 1/determinant and we have our answer
|
|
result.Multiply(1 / determinant);
|
|
}
|
|
|
|
template <uint8_t rows, uint8_t columns>
|
|
void Matrix<rows, columns>::Transpose(Matrix<columns, rows> &result) const {
|
|
for (uint8_t column_idx{0}; column_idx < rows; column_idx++) {
|
|
for (uint8_t row_idx{0}; row_idx < columns; row_idx++) {
|
|
result[row_idx][column_idx] = this->Get(column_idx, row_idx);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <uint8_t rows, uint8_t columns>
|
|
void Matrix<rows, columns>::Square(Matrix<rows, columns> &result) const {
|
|
static_assert(this->isSquare(), "You can't square an non-square matrix.");
|
|
|
|
this->Multiply(this, result);
|
|
}
|
|
|
|
template <uint8_t rows, uint8_t columns>
|
|
float Matrix<rows, columns>::Det() const {
|
|
static_assert(this->isSquare(),
|
|
"You can't take the determinant of a non-square matrix.");
|
|
Matrix<1, columns> eigenValues{};
|
|
this->EigenValues(eigenValues);
|
|
|
|
float determinant{1};
|
|
for (uint8_t i{0}; i < columns; i++) {
|
|
determinant *= eigenValues.Get(0, i);
|
|
}
|
|
|
|
return determinant;
|
|
}
|
|
|
|
template <uint8_t rows, uint8_t columns>
|
|
void Matrix<rows, columns>::EigenValues(Matrix<rows, 1> &eigenvalues) const {
|
|
static_assert(rows == columns,
|
|
"Eigenvalues can only be computed for square matrices.");
|
|
// I got this code from:
|
|
// https://www.quora.com/What-is-the-C-code-for-finding-eigenvalues
|
|
Matrix<rows, 1> v{};
|
|
Matrix<rows, 1> Av{};
|
|
Matrix<rows, 1> z{};
|
|
|
|
float d = 0.0;
|
|
float d_old = 0.0;
|
|
constexpr float convergence_value{1e-6};
|
|
constexpr uint16_t max_iterations{500};
|
|
|
|
// Initialize v as a random vector
|
|
for (int i = 0; i < rows; i++) {
|
|
v[0][i] = rand() / RAND_MAX;
|
|
}
|
|
|
|
// run this loop until the eigenvalues converge or we give up
|
|
for (uint16_t k{0}; k < max_iterations; k++) {
|
|
/* Multiply A by v */
|
|
for (int i = 0; i < rows; i++) {
|
|
Av[0][i] = 0.0;
|
|
for (int j = 0; j < rows; j++) {
|
|
Av[0][i] += this->Get(0, i * rows + j) * v[0][j];
|
|
}
|
|
}
|
|
|
|
// Calculate the eigenvalue and update v
|
|
d_old = d;
|
|
d = dot_product(v, Av, rows);
|
|
for (int i = 0; i < rows; i++) {
|
|
z[0][i] = Av[0][i] - d * v[0][i];
|
|
}
|
|
|
|
z.normalize(z);
|
|
|
|
for (int i = 0; i < rows; i++) {
|
|
v[0][i] = z[0][i];
|
|
}
|
|
|
|
/* Check for convergence */
|
|
if (std::fabs(d - d_old) < convergence_value) {
|
|
eigenvalues[0][k] = d;
|
|
k++;
|
|
d = 0.0;
|
|
for (int i = 0; i < rows; i++) {
|
|
v[0][i] = rand() / RAND_MAX;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <uint8_t rows, uint8_t columns>
|
|
void Matrix<rows, columns>::ElementMultiply(
|
|
const Matrix<rows, columns> &other, Matrix<rows, columns> &result) const {
|
|
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
|
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
|
result[row_idx][column_idx] =
|
|
this->Get(row_idx, column_idx) * other.Get(row_idx, column_idx);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <uint8_t rows, uint8_t columns>
|
|
void Matrix<rows, columns>::ElementDivide(const Matrix<rows, columns> &other,
|
|
Matrix<rows, columns> &result) const {
|
|
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
|
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
|
result[row_idx][column_idx] =
|
|
this->Get(row_idx, column_idx) / other.Get(row_idx, column_idx);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <uint8_t rows, uint8_t columns>
|
|
float Matrix<rows, columns>::Get(uint8_t row_index,
|
|
uint8_t column_index) const {
|
|
return this->matrix[row_index][column_index];
|
|
}
|
|
|
|
template <uint8_t rows, uint8_t columns>
|
|
void Matrix<rows, columns>::GetRow(uint8_t row_index,
|
|
Matrix<1, columns> &row) const {
|
|
row = Matrix<1, columns>(this->matrix[row_index]);
|
|
}
|
|
|
|
template <uint8_t rows, uint8_t columns>
|
|
void Matrix<rows, columns>::GetColumn(uint8_t column_index,
|
|
Matrix<rows, 1> &column) const {
|
|
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
|
column[0][column_index] = this->Get(row_idx, column_index);
|
|
}
|
|
}
|
|
|
|
template <uint8_t rows, uint8_t columns>
|
|
void Matrix<rows, columns>::ToString(std::string & stringBuffer) const{
|
|
for(uint8_t row_idx{0}; row_idx < rows; row_idx++){
|
|
stringBuffer += "|";
|
|
for(uint8_t column_idx{0}; column_idx < columns; column_idx++){
|
|
stringBuffer += std::to_string(this->matrix[row_idx][column_idx]);
|
|
if(column_idx != columns - 1){
|
|
stringBuffer += "\t";
|
|
}
|
|
}
|
|
stringBuffer += "|\n";
|
|
}
|
|
}
|
|
|
|
template <uint8_t rows, uint8_t columns>
|
|
template <uint8_t vector_size>
|
|
float Matrix<rows, columns>::dotProduct(const Matrix<vector_size, 1> &vec1,
|
|
const Matrix<vector_size, 1> &vec2) {
|
|
float sum{0};
|
|
for (uint8_t i{0}; i < vector_size; i++) {
|
|
sum += vec1.Get(i, 0) * vec2.Get(i, 0);
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
template <uint8_t rows, uint8_t columns>
|
|
void Matrix<rows, columns>::zeroMatrix() {
|
|
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
|
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
|
this->matrix[row_idx][column_idx] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <uint8_t rows, uint8_t columns>
|
|
void Matrix<rows, columns>::matrixOfMinors(
|
|
Matrix<rows, columns> &result) const {
|
|
Matrix<rows - 1, columns - 1> minorMatrix{};
|
|
|
|
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
|
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
|
this->minorMatrix(minorMatrix, row_idx, column_idx);
|
|
result[row_idx][column_idx] = minorMatrix.Det();
|
|
}
|
|
}
|
|
}
|
|
|
|
template <uint8_t rows, uint8_t columns>
|
|
void Matrix<rows, columns>::minorMatrix(Matrix<rows - 1, columns - 1> &result,
|
|
uint8_t row_idx,
|
|
uint8_t column_idx) const {
|
|
std::array<float, (rows - 1) * (columns - 1)> subArray{};
|
|
|
|
for (uint8_t row_iter{0}; row_iter < rows; row_iter++) {
|
|
for (uint8_t column_iter{0}; column_iter < columns; column_iter++) {
|
|
uint16_t array_idx =
|
|
static_cast<uint16_t>(row_iter) + static_cast<uint16_t>(column_iter);
|
|
if (row_iter == row_idx || column_iter == column_idx) {
|
|
continue;
|
|
}
|
|
subArray[array_idx] = this->Get(row_iter, column_iter);
|
|
}
|
|
}
|
|
|
|
result = Matrix<rows - 1, columns - 1>{subArray};
|
|
}
|
|
|
|
template <uint8_t rows, uint8_t columns>
|
|
void Matrix<rows, columns>::adjugate(Matrix<rows, columns> &result) const {
|
|
for (uint8_t row_iter{0}; row_iter < rows; row_iter++) {
|
|
for (uint8_t column_iter{0}; column_iter < columns; column_iter++) {
|
|
float sign = ((row_iter + 1) % 2) == 0 ? -1 : 1;
|
|
sign *= ((column_iter + 1) % 2) == 0 ? -1 : 1;
|
|
result[row_iter][column_iter] =
|
|
this->Get(row_iter, column_iter) * sign;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <uint8_t rows, uint8_t columns>
|
|
void Matrix<rows, columns>::normalize(Matrix<rows, columns> &result) const {
|
|
float sum{0};
|
|
for (uint8_t column_idx{0}; column_idx < rows; column_idx++) {
|
|
for (uint8_t row_idx{0}; row_idx < columns; row_idx++) {
|
|
sum += this->Get(row_idx, column_idx);
|
|
}
|
|
}
|
|
|
|
if (sum == 0) {
|
|
// this wouldn't do anything anyways
|
|
result.zeroMatrix();
|
|
return;
|
|
}
|
|
|
|
for (uint8_t column_idx{0}; column_idx < rows; column_idx++) {
|
|
for (uint8_t row_idx{0}; row_idx < columns; row_idx++) {
|
|
result[row_idx][column_idx] = this->Get(row_idx, column_idx) / sum;
|
|
}
|
|
}
|
|
} |