#pragma once #include #include #include #include #include template class Matrix { public: Matrix(); /** * @brief Initialize a matrix with an array */ Matrix(const std::array &array); // TODO: Figure out how to do this /** * @brief Initialize a matrix directly with any number of arguments */ // template // Matrix(Args&&... args); /** * @brief Element-wise matrix addition * @param other the other matrix to add to this one * @param result A buffer to store the result into * @note there is no problem if result == this */ void Add(const Matrix &other, Matrix &result) const; /** * @brief Element-wise subtract matrix * @param other the other matrix to subtract from this one * @param result A buffer to store the result into * @note there is no problem if result == this */ void Sub(const Matrix &other, Matrix &result) const; /** * @brief Matrix multiply the two matrices * @param other the other matrix to multiply into this one * @param result A buffer to store the result into */ template void Mult(const Matrix &other, Matrix &result) const; /** * @brief Multiply the matrix by a scalar * @param scalar the the scalar to multiply by * @param result A buffer to store the result into * @note there is no problem if result == this */ void Mult(float scalar, Matrix &result) const; /** * @brief Invert this matrix * @param result A buffer to store the result into * @warning this is super slow! Only call it if you absolutely have to!!! */ void Invert(Matrix &result) const; /** * @brief Transpose this matrix * @param result A buffer to store the result into */ void Transpose(Matrix &result) const; /** * @brief Square this matrix * @param result A buffer to store the result into */ void Square(Matrix &result) const; /** * @return Get the determinant of the matrix */ float Det() const; /** * @brief Calculate the eigenvalues for a square matrix * @param result a buffer to store the result into */ void EigenValues(Matrix &eigenvalues) const; /** * @brief Element-wise multiply the two matrices * @param other the other matrix to multiply into this one * @param result A buffer to store the result into * @note there is no problem if result == this */ void ElementMultiply(const Matrix &other, Matrix &result) const; /** * @brief Element-wise divide the two matrices * @param other the other matrix to multiply into this one * @param result A buffer to store the result into * @note there is no problem if result == this */ void ElementDivide(const Matrix &other, Matrix &result) const; /** * @brief Get an element from the matrix * @param row the row index of the element * @param column the column index of the element * @return The value of the element you want to get */ float Get(uint8_t row_index, uint8_t column_index) const; /** * @brief get the specified row of the matrix returned as a reference to the * internal array */ std::array &operator[](uint8_t row_index) { return this->matrix[row_index]; } Matrix &operator=(const Matrix &other) { for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { this->matrix[row_idx][column_idx] = other.Get(row_idx, column_idx); } } } /** * @brief Get a row from the matrix * @param row_index the row index to get * @param row a buffer to write the row into */ void GetRow(uint8_t row_index, Matrix<1, columns> &row) const; /** * @brief Get a row from the matrix * @param column_index the row index to get * @param column a buffer to write the row into */ void GetColumn(uint8_t column_index, Matrix &column) const; /** * @brief Get the number of rows in this matrix */ constexpr uint8_t GetRowSize() { return rows; } /** * @brief Get the number of columns in this matrix */ constexpr uint8_t GetColumnSize() { return columns; } void ToString(std::string &stringBuffer) const; private: /** * @brief take the dot product of the two vectors */ template static float dotProduct(const Matrix<1, vector_size> &vec1, const Matrix<1, vector_size> &vec2); /** * @brief Set all elements in this matrix to zero */ void zeroMatrix(); void matrixOfMinors(Matrix &result) const; void minorMatrix(Matrix &result, uint8_t row_idx, uint8_t column_idx) const; void adjugate(Matrix &result) const; /** * @brief reduce the matrix so the sum of its elements equal 1 * @param result a buffer to store the result into */ void normalize(Matrix &result) const; constexpr bool isSquare() { return rows == columns; } void setMatrixToArray(const std::array &array); std::array, rows> matrix; }; template void Matrix::setMatrixToArray( const std::array &array) { for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { uint16_t array_idx = static_cast(row_idx) * static_cast(columns) + static_cast(column_idx); if (array_idx < array.size()) { this->matrix[row_idx][column_idx] = array[array_idx]; } else { this->matrix[row_idx][column_idx] = 0; } } } } template Matrix::Matrix() { this->zeroMatrix(); } template Matrix::Matrix(const std::array &array) { this->setMatrixToArray(array); } // template // template // Matrix::Matrix(Args&&... args){ // // Initialize a std::array with the arguments // if(typeid(args) == typeid(std::array)){ // this->setMatrixToArray(args); // } // else{ // std::array values = {static_cast(args)...}; // // now store the array in our internal matrix // this->setMatrixToArray(values); // } // } template void Matrix::Add(const Matrix &other, Matrix &result) const { for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { result[row_idx][column_idx] = this->Get(row_idx, column_idx) + other.Get(row_idx, column_idx); } } } template void Matrix::Sub(const Matrix &other, Matrix &result) const { for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { result[row_idx][column_idx] = this->Get(row_idx, column_idx) - other.Get(row_idx, column_idx); } } } template template void Matrix::Mult(const Matrix &other, Matrix &result) const { for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { // get our row Matrix<1, columns> this_row; this->GetRow(row_idx, this_row); // get the other matrices column Matrix other_column; other.GetColumn(column_idx, other_column); // transpose the other matrix's column Matrix<1, rows> other_column_t; other_column.Transpose(other_column_t); // the result's index is equal to the dot product of these two vectors result[row_idx][column_idx] = Matrix::dotProduct(this_row, other_column_t); } } } template void Matrix::Mult(float scalar, Matrix &result) const { for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { result[row_idx][column_idx] = this->Get(row_idx, column_idx) * scalar; } } } template void Matrix::Invert(Matrix &result) const { // since all matrix sizes have to be statically specified at compile time we // can do this static_assert(rows == columns, "Your matrix isn't square and can't be inverted"); // unfortunately we can't calculate this at compile time so we'll just reurn // zeros if (this->Det() < 0) { // you can't invert a matrix with a negative determinant result.zeroMatrix(); return; } // TODO: This algorithm is really inneficient because of the matrix of minors. // We should make a different algorithm how to calculate the inverse: // https://www.mathsisfun.com/algebra/matrix-inverse-minors-cofactors-adjugate.html // calculate the matrix of minors Matrix minors{}; this->matrixOfMinors(minors); // now adjugate the matrix and save it in our output minors.adjugate(result); float determinant = this->Det(); // scale the result by 1/determinant and we have our answer result.Mult(1 / determinant); } template void Matrix::Transpose(Matrix &result) const { for (uint8_t column_idx{0}; column_idx < rows; column_idx++) { for (uint8_t row_idx{0}; row_idx < columns; row_idx++) { result[row_idx][column_idx] = this->Get(column_idx, row_idx); } } } template void Matrix::Square(Matrix &result) const { static_assert(this->isSquare(), "You can't square an non-square matrix."); this->Mult(this, result); } template float Matrix::Det() const { static_assert(this->isSquare(), "You can't take the determinant of a non-square matrix."); Matrix<1, columns> eigenValues{}; this->EigenValues(eigenValues); float determinant{1}; for (uint8_t i{0}; i < columns; i++) { determinant *= eigenValues.Get(0, i); } return determinant; } template void Matrix::EigenValues(Matrix &eigenvalues) const { static_assert(rows == columns, "Eigenvalues can only be computed for square matrices."); // I got this code from: // https://www.quora.com/What-is-the-C-code-for-finding-eigenvalues Matrix v{}; Matrix Av{}; Matrix z{}; float d = 0.0; float d_old = 0.0; constexpr float convergence_value{1e-6}; constexpr uint16_t max_iterations{500}; // Initialize v as a random vector for (int i = 0; i < rows; i++) { v[0][i] = rand() / RAND_MAX; } // run this loop until the eigenvalues converge or we give up for (uint16_t k{0}; k < max_iterations; k++) { /* Multiply A by v */ for (int i = 0; i < rows; i++) { Av[0][i] = 0.0; for (int j = 0; j < rows; j++) { Av[0][i] += this->Get(0, i * rows + j) * v[0][j]; } } // Calculate the eigenvalue and update v d_old = d; d = dot_product(v, Av, rows); for (int i = 0; i < rows; i++) { z[0][i] = Av[0][i] - d * v[0][i]; } z.normalize(z); for (int i = 0; i < rows; i++) { v[0][i] = z[0][i]; } /* Check for convergence */ if (std::fabs(d - d_old) < convergence_value) { eigenvalues[0][k] = d; k++; d = 0.0; for (int i = 0; i < rows; i++) { v[0][i] = rand() / RAND_MAX; } } } } template void Matrix::ElementMultiply( const Matrix &other, Matrix &result) const { for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { result[row_idx][column_idx] = this->Get(row_idx, column_idx) * other.Get(row_idx, column_idx); } } } template void Matrix::ElementDivide(const Matrix &other, Matrix &result) const { for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { result[row_idx][column_idx] = this->Get(row_idx, column_idx) / other.Get(row_idx, column_idx); } } } template float Matrix::Get(uint8_t row_index, uint8_t column_index) const { return this->matrix[row_index][column_index]; } template void Matrix::GetRow(uint8_t row_index, Matrix<1, columns> &row) const { row = Matrix<1, columns>(this->matrix[row_index]); } template void Matrix::GetColumn(uint8_t column_index, Matrix &column) const { for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { column[row_idx][0] = this->Get(row_idx, column_index); } } template void Matrix::ToString(std::string &stringBuffer) const { for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { stringBuffer += "|"; for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { stringBuffer += std::to_string(this->matrix[row_idx][column_idx]); if (column_idx != columns - 1) { stringBuffer += "\t"; } } stringBuffer += "|\n"; } } template template float Matrix::dotProduct(const Matrix<1, vector_size> &vec1, const Matrix<1, vector_size> &vec2) { float sum{0}; for (uint8_t i{0}; i < vector_size; i++) { sum += vec1.Get(0, i) * vec2.Get(0, i); } return sum; } template void Matrix::zeroMatrix() { for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { this->matrix[row_idx][column_idx] = 0; } } } template void Matrix::matrixOfMinors( Matrix &result) const { Matrix minorMatrix{}; for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { this->minorMatrix(minorMatrix, row_idx, column_idx); result[row_idx][column_idx] = minorMatrix.Det(); } } } template void Matrix::minorMatrix(Matrix &result, uint8_t row_idx, uint8_t column_idx) const { std::array subArray{}; for (uint8_t row_iter{0}; row_iter < rows; row_iter++) { for (uint8_t column_iter{0}; column_iter < columns; column_iter++) { uint16_t array_idx = static_cast(row_iter) + static_cast(column_iter); if (row_iter == row_idx || column_iter == column_idx) { continue; } subArray[array_idx] = this->Get(row_iter, column_iter); } } result = Matrix{subArray}; } template void Matrix::adjugate(Matrix &result) const { for (uint8_t row_iter{0}; row_iter < rows; row_iter++) { for (uint8_t column_iter{0}; column_iter < columns; column_iter++) { float sign = ((row_iter + 1) % 2) == 0 ? -1 : 1; sign *= ((column_iter + 1) % 2) == 0 ? -1 : 1; result[row_iter][column_iter] = this->Get(row_iter, column_iter) * sign; } } } template void Matrix::normalize(Matrix &result) const { float sum{0}; for (uint8_t column_idx{0}; column_idx < rows; column_idx++) { for (uint8_t row_idx{0}; row_idx < columns; row_idx++) { sum += this->Get(row_idx, column_idx); } } if (sum == 0) { // this wouldn't do anything anyways result.zeroMatrix(); return; } for (uint8_t column_idx{0}; column_idx < rows; column_idx++) { for (uint8_t row_idx{0}; row_idx < columns; row_idx++) { result[row_idx][column_idx] = this->Get(row_idx, column_idx) / sum; } } }