#pragma once #include #include #include #include #include // TODO: Add a function to calculate eigenvalues/vectors // TODO: Add a function to compute RREF // TODO: Add a function for SVD decomposition // TODO: Add a function for LQ decomposition template class Matrix { public: /** * @brief create a matrix but leave all of its values unitialized */ Matrix() = default; /** * @brief Create a matrix but fill all of its entries with one value */ Matrix(float value); /** * @brief Initialize a matrix with an array */ Matrix(const std::array &array); /** * @brief Initialize a matrix as a copy of another matrix */ Matrix(const Matrix &other); // TODO: Figure out how to do this /** * @brief Initialize a matrix directly with any number of arguments */ // template // Matrix(Args&&... args); /** * @brief Set all elements in this to value */ void Fill(float value); /** * @brief Element-wise matrix addition * @param other the other matrix to add to this one * @param result A buffer to store the result into * @note there is no problem if result == this */ Matrix &Add(const Matrix &other, Matrix &result) const; /** * @brief Element-wise subtract matrix * @param other the other matrix to subtract from this one * @param result A buffer to store the result into * @note there is no problem if result == this */ Matrix &Sub(const Matrix &other, Matrix &result) const; /** * @brief Matrix multiply the two matrices * @param other the other matrix to multiply into this one * @param result A buffer to store the result into */ template Matrix &Mult(const Matrix &other, Matrix &result) const; /** * @brief Multiply the matrix by a scalar * @param scalar the the scalar to multiply by * @param result A buffer to store the result into * @note there is no problem if result == this */ Matrix &Mult(float scalar, Matrix &result) const; /** * @brief Element-wise multiply the two matrices * @param other the other matrix to multiply into this one * @param result A buffer to store the result into * @note there is no problem if result == this */ Matrix &ElementMultiply(const Matrix &other, Matrix &result) const; /** * @brief Element-wise divide the two matrices * @param other the other matrix to multiply into this one * @param result A buffer to store the result into * @note there is no problem if result == this */ Matrix &ElementDivide(const Matrix &other, Matrix &result) const; Matrix & MinorMatrix(Matrix &result, uint8_t row_idx, uint8_t column_idx) const; /** * @return Get the determinant of the matrix * @note for right now only 2x2 and 3x3 matrices are supported */ float Det() const; Matrix &MatrixOfMinors(Matrix &result) const; /** * @brief Invert this matrix * @param result A buffer to store the result into * @warning this is super slow! Only call it if you absolutely have to!!! */ Matrix &Invert(Matrix &result) const; /** * @brief Transpose this matrix * @param result A buffer to store the result into */ Matrix &Transpose(Matrix &result) const; /** * @brief reduce the matrix so the sum of its elements equal 1 * @param result a buffer to store the result into */ Matrix &Normalize(Matrix &result) const; /** * @brief Get a row from the matrix * @param row_index the row index to get * @param row a buffer to write the row into */ Matrix<1, columns> &GetRow(uint8_t row_index, Matrix<1, columns> &row) const; /** * @brief Get a row from the matrix * @param column_index the row index to get * @param column a buffer to write the row into */ Matrix &GetColumn(uint8_t column_index, Matrix &column) const; /** * @brief Get the number of rows in this matrix */ constexpr uint8_t GetRowSize() { return rows; } /** * @brief Get the number of columns in this matrix */ constexpr uint8_t GetColumnSize() { return columns; } void ToString(std::string &stringBuffer) const; /** * @brief Get an element from the matrix * @param row the row index of the element * @param column the column index of the element * @return The value of the element you want to get */ float Get(uint8_t row_index, uint8_t column_index) const; /** * @brief get the specified row of the matrix returned as a reference to the * internal array */ std::array &operator[](uint8_t row_index); /** * @brief Copy the contents of other into this matrix */ Matrix &operator=(const Matrix &other); /** * @brief Return a new matrix that is the sum of this matrix and other matrix */ Matrix operator+(const Matrix &other) const; Matrix operator-(const Matrix &other) const; Matrix operator*(const Matrix &other) const; Matrix operator*(float scalar) const; private: /** * @brief take the dot product of the two vectors */ template static float dotProduct(const Matrix<1, vector_size> &vec1, const Matrix<1, vector_size> &vec2); template static float dotProduct(const Matrix &vec1, const Matrix &vec2); Matrix &adjugate(Matrix &result) const; void setMatrixToArray(const std::array &array); std::array, rows> matrix; }; template void Matrix::setMatrixToArray( const std::array &array) { for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { uint16_t array_idx = static_cast(row_idx) * static_cast(columns) + static_cast(column_idx); if (array_idx < array.size()) { this->matrix[row_idx][column_idx] = array[array_idx]; } else { this->matrix[row_idx][column_idx] = 0; } } } } template Matrix::Matrix(float value) { this->Fill(value); } template Matrix::Matrix(const std::array &array) { this->setMatrixToArray(array); } // template // template // Matrix::Matrix(Args&&... args){ // // Initialize a std::array with the arguments // if(typeid(args) == typeid(std::array)){ // this->setMatrixToArray(args); // } // else{ // std::array values = {static_cast(args)...}; // // now store the array in our internal matrix // this->setMatrixToArray(values); // } // } template Matrix::Matrix(const Matrix &other) { for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { this->matrix[row_idx][column_idx] = other.Get(row_idx, column_idx); } } } template Matrix & Matrix::Add(const Matrix &other, Matrix &result) const { for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { result[row_idx][column_idx] = this->Get(row_idx, column_idx) + other.Get(row_idx, column_idx); } } return result; } template Matrix & Matrix::Sub(const Matrix &other, Matrix &result) const { for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { result[row_idx][column_idx] = this->Get(row_idx, column_idx) - other.Get(row_idx, column_idx); } } return result; } template template Matrix & Matrix::Mult(const Matrix &other, Matrix &result) const { // allocate some buffers for all of our dot products Matrix<1, columns> this_row; Matrix other_column; Matrix<1, rows> other_column_t; for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { // get our row this->GetRow(row_idx, this_row); for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { // get the other matrix'ss column other.GetColumn(column_idx, other_column); // transpose the other matrix's column other_column.Transpose(other_column_t); // the result's index is equal to the dot product of these two vectors result[row_idx][column_idx] = Matrix::dotProduct(this_row, other_column_t); } } return result; } template Matrix & Matrix::Mult(float scalar, Matrix &result) const { for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { result[row_idx][column_idx] = this->Get(row_idx, column_idx) * scalar; } } return result; } template Matrix & Matrix::Invert(Matrix &result) const { // since all matrix sizes have to be statically specified at compile time we // can do this static_assert(rows == columns, "Your matrix isn't square and can't be inverted"); // unfortunately we can't calculate this at compile time so we'll just reurn // zeros float determinant{this->Det()}; if (determinant == 0) { // you can't invert a matrix with a negative determinant result.Fill(0); return result; } // TODO: This algorithm is really inneficient because of the matrix of minors. // We should make a different algorithm how to calculate the inverse: // https://www.mathsisfun.com/algebra/matrix-inverse-minors-cofactors-adjugate.html // calculate the matrix of minors Matrix minors{}; this->MatrixOfMinors(minors); // now adjugate the matrix and save it in our output minors.adjugate(result); // scale the result by 1/determinant and we have our answer result = result * (1 / determinant); // result.Mult(1 / determinant, result); return result; } template Matrix & Matrix::Transpose(Matrix &result) const { for (uint8_t column_idx{0}; column_idx < rows; column_idx++) { for (uint8_t row_idx{0}; row_idx < columns; row_idx++) { result[row_idx][column_idx] = this->Get(column_idx, row_idx); } } return result; } // explicitly define the determinant for a 2x2 matrix because it is definitely // the fastest way to calculate a 2x2 matrix determinant template <> float Matrix<0, 0>::Det() const { return 1e+6; } template <> float Matrix<1, 1>::Det() const { return this->matrix[0][0]; } template <> float Matrix<2, 2>::Det() const { return this->matrix[0][0] * this->matrix[1][1] - this->matrix[0][1] * this->matrix[1][0]; } template float Matrix::Det() const { static_assert(rows == columns, "You can't take the determinant of a non-square matrix."); Matrix MinorMatrix{}; float determinant{0}; for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { // for odd indices the sign is negative float sign = (column_idx % 2 == 0) ? 1 : -1; determinant += sign * this->matrix[0][column_idx] * this->MinorMatrix(MinorMatrix, 0, column_idx).Det(); } return determinant; } template Matrix & Matrix::ElementMultiply(const Matrix &other, Matrix &result) const { for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { result[row_idx][column_idx] = this->Get(row_idx, column_idx) * other.Get(row_idx, column_idx); } } return result; } template Matrix & Matrix::ElementDivide(const Matrix &other, Matrix &result) const { for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { result[row_idx][column_idx] = this->Get(row_idx, column_idx) / other.Get(row_idx, column_idx); } } return result; } template float Matrix::Get(uint8_t row_index, uint8_t column_index) const { if (row_index > rows - 1 || column_index > columns - 1) { return 1e+10; // TODO: We should throw something here instead of failing // quietly } return this->matrix[row_index][column_index]; } template Matrix<1, columns> & Matrix::GetRow(uint8_t row_index, Matrix<1, columns> &row) const { row = Matrix<1, columns>(this->matrix[row_index]); return row; } template Matrix & Matrix::GetColumn(uint8_t column_index, Matrix &column) const { for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { column[row_idx][0] = this->Get(row_idx, column_index); } return column; } template void Matrix::ToString(std::string &stringBuffer) const { for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { stringBuffer += "|"; for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { stringBuffer += std::to_string(this->matrix[row_idx][column_idx]); if (column_idx != columns - 1) { stringBuffer += "\t"; } } stringBuffer += "|\n"; } } template std::array &Matrix:: operator[](uint8_t row_index) { if (row_index > rows - 1) { return this->matrix[0]; // TODO: We should throw something here instead of // failing quietly. } return this->matrix[row_index]; } template Matrix &Matrix:: operator=(const Matrix &other) { for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { this->matrix[row_idx][column_idx] = other.Get(row_idx, column_idx); } } // return a reference to ourselves so you can chain together these functions return *this; } template Matrix Matrix:: operator+(const Matrix &other) const { Matrix buffer{}; this->Add(other, buffer); return buffer; } template Matrix Matrix:: operator-(const Matrix &other) const { Matrix buffer{}; this->Sub(other, buffer); return buffer; } template Matrix Matrix:: operator*(const Matrix &other) const { Matrix buffer{}; this->Mult(other, buffer); return buffer; } template Matrix Matrix::operator*(float scalar) const { Matrix buffer{}; this->Mult(scalar, buffer); return buffer; } template template float Matrix::dotProduct(const Matrix<1, vector_size> &vec1, const Matrix<1, vector_size> &vec2) { float sum{0}; for (uint8_t i{0}; i < vector_size; i++) { sum += vec1.Get(0, i) * vec2.Get(0, i); } return sum; } template template float Matrix::dotProduct(const Matrix &vec1, const Matrix &vec2) { float sum{0}; for (uint8_t i{0}; i < vector_size; i++) { sum += vec1.Get(i, 0) * vec2.Get(i, 0); } return sum; } template void Matrix::Fill(float value) { for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { this->matrix[row_idx][column_idx] = value; } } } template Matrix & Matrix::MatrixOfMinors(Matrix &result) const { Matrix MinorMatrix{}; for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { this->MinorMatrix(MinorMatrix, row_idx, column_idx); result[row_idx][column_idx] = MinorMatrix.Det(); } } return result; } template Matrix & Matrix::MinorMatrix(Matrix &result, uint8_t row_idx, uint8_t column_idx) const { std::array subArray{}; uint16_t array_idx{0}; for (uint8_t row_iter{0}; row_iter < rows; row_iter++) { if (row_iter == row_idx) { continue; } for (uint8_t column_iter{0}; column_iter < columns; column_iter++) { if (column_iter == column_idx) { continue; } subArray[array_idx] = this->Get(row_iter, column_iter); array_idx++; } } result = Matrix{subArray}; return result; } template Matrix & Matrix::adjugate(Matrix &result) const { for (uint8_t row_iter{0}; row_iter < rows; row_iter++) { for (uint8_t column_iter{0}; column_iter < columns; column_iter++) { float sign = ((row_iter + 1) % 2) == 0 ? -1 : 1; sign *= ((column_iter + 1) % 2) == 0 ? -1 : 1; result[column_iter][row_iter] = this->Get(row_iter, column_iter) * sign; } } return result; } template Matrix & Matrix::Normalize(Matrix &result) const { float sum{0}; for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { float val{this->Get(row_idx, column_idx)}; sum += val * val; } } if (sum == 0) { // this wouldn't do anything anyways result.Fill(1e+6); return result; } sum = sqrt(sum); for (uint8_t row_idx{0}; row_idx < rows; row_idx++) { for (uint8_t column_idx{0}; column_idx < columns; column_idx++) { result[row_idx][column_idx] = this->Get(row_idx, column_idx) / sum; } } return result; }