Compare commits

9 Commits

Author SHA1 Message Date
bbbbd25b58 Fixing timing test runner
All checks were successful
Merge-Checker / Benchmarking (pull_request) Successful in 23s
Merge-Checker / build_and_test (pull_request) Successful in 17s
2025-05-29 16:10:37 -04:00
ci-bot
dbdae6c70a Update matrix-timing-tests timings [skip ci] 2025-05-29 15:20:33 +00:00
46f8e87509 Added a check to see if the timing results have signifigantly changed
All checks were successful
Merge-Checker / build_and_test (pull_request) Successful in 1m25s
2025-05-29 11:19:25 -04:00
ci-bot
c5af1edc4d Update matrix-timing-tests timings [skip ci] 2025-05-29 15:01:26 +00:00
ec913ad19c Split timing tests into its own job
All checks were successful
Merge-Checker / build_and_test (pull_request) Successful in 27s
2025-05-29 11:00:11 -04:00
ci-bot
7aa7949ce3 Update matrix-timing-tests timings [skip ci] 2025-05-21 22:40:40 +00:00
eb98e6a6c3 updated readme
All checks were successful
Merge-Checker / build_and_test (pull_request) Successful in 21s
2025-05-21 18:40:16 -04:00
61b67052f3 Added matrix test timings
Timings get auto-comitted

Update matrix-timing-tests timings [skip ci]

Updated readme

Update matrix-timing-tests timings [skip ci]

Fixing auto-checkout issues
2025-05-21 18:38:36 -04:00
a5dbd01aa1 Added a merge checker script that has to run before you can merge to main
Updated merge checker and seperated the matrix tests fro mthe timing tests
2025-05-21 18:38:33 -04:00
12 changed files with 638 additions and 919 deletions

View File

@@ -0,0 +1,127 @@
name: Merge-Checker
on:
pull_request:
branches: ["**"]
paths-ignore:
- 'unit-tests/timing-results/**'
jobs:
Benchmarking:
runs-on: ubuntu-latest
steps:
- name: Checkout source code
uses: actions/checkout@v3
with:
persist-credentials: true
fetch-depth: 0
- name: Install dependencies (CMake + Ninja + build tools)
run: |
sudo apt-get update
sudo apt-get install -y cmake ninja-build build-essential time git
- name: Configure project with CMake
run: cmake -G Ninja -S . -B build/
- name: Build with Ninja
run: ninja -C build/
- name: Run matrix-timing-tests
run: |
mkdir -p unit-tests/timing-results
if [ -x build/unit-tests/matrix-timing-tests ]; then
echo "Running matrix-timing-tests with timing"
/usr/bin/time -v build/unit-tests/matrix-timing-tests -d yes &> unit-tests/timing-results/matrix-timing-tests.txt
cat unit-tests/timing-results/matrix-timing-tests.txt
else
echo "matrix-timing-tests executable not found or not executable"
exit 1
fi
- name: Compare timing results
id: check_diff
run: |
git show origin/${{ github.event.pull_request.head.ref }}:unit-tests/timing-results/matrix-timing-tests.txt > old.txt || echo "" > old.txt
cp unit-tests/timing-results/matrix-timing-tests.txt new.txt
echo "Comparing timing results for changes ≥ 0.1s (ignoring 'Timing Tests' lines)..."
changed=0
awk -v changed_ref=/tmp/timings_changed.flag '
BEGIN {
change_threshold = 0.1
}
FILENAME == "old.txt" && /^[0-9]+\.[0-9]+ s: / {
label = substr($0, index($0, ":") + 2)
if (label != "Timing Tests") {
label_times[label] = $1
}
}
FILENAME == "new.txt" && /^[0-9]+\.[0-9]+ s: / {
new_time = $1
label = substr($0, index($0, ":") + 2)
if (label == "Timing Tests") next
old_time = label_times[label]
delta = new_time - old_time
if (delta < 0) delta = -delta
if (old_time != "" && delta >= change_threshold) {
printf "⚠️ %.3f s → %.3f s: %s (Δ=%.3f s)\n", old_time, new_time, label, delta
system("touch " changed_ref)
} else if (old_time == "") {
printf "🆕 New timing entry: %.3f s: %s\n", new_time, label
system("touch " changed_ref)
}
}
END {
if (!system("test -f " changed_ref)) {
exit 0
} else {
print "✅ Timings havent changed significantly (Δ < 0.1s)."
exit 0
}
}
' old.txt new.txt
if [ -f /tmp/timings_changed.flag ]; then
echo "timings_changed=true" >> $GITHUB_OUTPUT
else
echo "timings_changed=false" >> $GITHUB_OUTPUT
fi
- name: Commit and push timing results
if: steps.check_diff.outputs.timings_changed == 'true' && github.event.pull_request.head.repo.full_name == github.repository
run: |
git config --global user.name "ci-bot"
git config --global user.email "ci-bot@local"
BRANCH_NAME="${{ github.event.pull_request.head.ref }}"
git stash
echo "Checking out source branch $BRANCH_NAME"
git fetch origin "$BRANCH_NAME"
git checkout "$BRANCH_NAME"
git pull
echo "Checking if last commit was a timing update"
LAST_COMMIT_MSG=$(git log -1 --pretty=%B)
if echo "$LAST_COMMIT_MSG" | grep -q "Update matrix-timing-tests timings"; then
echo "Last commit was a timing update, skipping commit."
exit 0
else
echo "Last commit name was: $LAST_COMMIT_MSG"
git stash pop
fi
git add unit-tests/timing-results/matrix-timing-tests.txt
if git diff --quiet --cached; then
echo "No changes to commit"
else
git commit -m "Update matrix-timing-tests timings"
git push origin "$BRANCH_NAME"
fi

View File

@@ -35,68 +35,4 @@ jobs:
else
echo "Warning: $test_exec not found or not executable"
fi
done
- name: Run matrix-timing-tests
run: |
mkdir -p unit-tests/timing-results
if [ -x build/unit-tests/matrix-timing-tests ]; then
echo "Running matrix-timing-tests with timing"
/usr/bin/time -v build/unit-tests/matrix-timing-tests -d yes &> unit-tests/timing-results/matrix-timing-tests.txt
cat unit-tests/timing-results/matrix-timing-tests.txt
else
echo "matrix-timing-tests executable not found or not executable"
exit 1
fi
- name: Compare timing results
id: check_diff
run: |
git show origin/${{ github.event.pull_request.head.ref }}:unit-tests/timing-results/matrix-timing-tests.txt > old.txt || echo "" > old.txt
cp unit-tests/timing-results/matrix-timing-tests.txt new.txt
echo "Comparing timing results for changes ≥ 0.1s (ignoring 'Timing Tests' lines)..."
changed=0
awk -v changed_ref=/tmp/timings_changed.flag '
BEGIN {
change_threshold = 0.1
}
FILENAME == "old.txt" && /^[0-9]+\.[0-9]+ s: / {
label = substr($0, index($0, ":") + 2)
if (label != "Timing Tests") {
label_times[label] = $1
}
}
FILENAME == "new.txt" && /^[0-9]+\.[0-9]+ s: / {
new_time = $1
label = substr($0, index($0, ":") + 2)
if (label == "Timing Tests") next
old_time = label_times[label]
delta = new_time - old_time
if (delta < 0) delta = -delta
if (old_time != "" && delta >= change_threshold) {
printf "⚠️ %.3f s → %.3f s: %s (Δ=%.3f s)\n", old_time, new_time, label, delta
system("touch " changed_ref)
} else if (old_time == "") {
printf "🆕 New timing entry: %.3f s: %s\n", new_time, label
system("touch " changed_ref)
}
}
END {
if (!system("test -f " changed_ref)) {
exit 0
} else {
print "✅ Timings havent changed significantly (Δ < 0.1s)."
exit 0
}
}
' old.txt new.txt
if [ -f /tmp/timings_changed.flag ]; then
echo "timings_changed=true" >> $GITHUB_OUTPUT
else
echo "timings_changed=false" >> $GITHUB_OUTPUT
fi
done

View File

@@ -75,9 +75,5 @@
},
"clangd.enable": true,
"C_Cpp.dimInactiveRegions": false,
"editor.defaultFormatter": "xaver.clang-format",
"clangd.inactiveRegions.useBackgroundHighlight": false,
"clangd.arguments": [
"--compile-commands-dir=${workspaceFolder}/build"
],
"editor.defaultFormatter": "xaver.clang-format"
}

View File

@@ -6,9 +6,7 @@ add_subdirectory(unit-tests)
set(CMAKE_CXX_STANDARD 11)
add_compile_options(-Wall -Wextra -Wpedantic)
add_compile_options (-fdiagnostics-color=always)
set(CMAKE_COLOR_DIAGNOSTICS ON)
add_compile_options(-fdiagnostics-color=always -Wall -Wextra -Wpedantic)
include(FetchContent)

View File

@@ -2,11 +2,4 @@
This matrix math library is focused on embedded development and avoids any heap memory allocation unless you explicitly ask for it.
It uses templates to pre-allocate matrices on the stack.
# Building
1. Initialize the repositiory with the command:
```bash
cmake -S . -B build -G Ninja
```
2. Go into the build folder and run `ninja`
3. That's it. You can test out the build by running `./unit-tests/matrix-tests`
There are still several operations that are works in progress

View File

@@ -1,10 +1,3 @@
// This #ifndef section makes clangd happy so that it can properly do type hints
// in this file
#ifndef MATRIX_H_
#define MATRIX_H_
#include "Matrix.hpp"
#endif
#ifdef MATRIX_H_ // since the .cpp file has to be included by the .hpp file this
// will evaluate to true
#include "Matrix.hpp"
@@ -12,28 +5,29 @@
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <type_traits>
#include <cstring>
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns>::Matrix(const std::array<float, rows * columns> &array) {
Matrix<rows, columns>::Matrix(float value)
{
this->Fill(value);
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns>::Matrix(const std::array<float, rows * columns> &array)
{
this->setMatrixToArray(array);
}
template <uint8_t rows, uint8_t columns>
template <typename... Args>
Matrix<rows, columns>::Matrix(Args... args) {
Matrix<rows, columns>::Matrix(Args... args)
{
constexpr uint16_t arraySize{static_cast<uint16_t>(rows) *
static_cast<uint16_t>(columns)};
std::initializer_list<float> initList{static_cast<float>(args)...};
// if there is only one value, we actually want to do a fill
if (sizeof...(args) == 1) {
this->Fill(*initList.begin());
}
static_assert(sizeof...(args) == arraySize || sizeof...(args) == 1,
"You did not provide the right amount of initializers for this "
"matrix size");
// choose whichever buffer size is smaller for the copy length
uint32_t minSize =
std::min(arraySize, static_cast<uint16_t>(initList.size()));
@@ -41,19 +35,22 @@ Matrix<rows, columns>::Matrix(Args... args) {
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> Matrix<rows, columns>::Identity() {
Matrix<rows, columns> identityMatrix{0};
uint32_t minDimension = std::min(rows, columns);
for (uint8_t idx{0}; idx < minDimension; idx++) {
identityMatrix[idx][idx] = 1;
void Matrix<rows, columns>::Identity()
{
this->Fill(0);
for (uint8_t idx{0}; idx < rows; idx++)
{
this->matrix[idx * columns + idx] = 1;
}
return identityMatrix;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns>::Matrix(const Matrix<rows, columns> &other) {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
Matrix<rows, columns>::Matrix(const Matrix<rows, columns> &other)
{
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
this->matrix[row_idx * columns + column_idx] =
other.Get(row_idx, column_idx);
}
@@ -62,15 +59,21 @@ Matrix<rows, columns>::Matrix(const Matrix<rows, columns> &other) {
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::setMatrixToArray(
const std::array<float, rows * columns> &array) {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
const std::array<float, rows * columns> &array)
{
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
uint16_t array_idx =
static_cast<uint16_t>(row_idx) * static_cast<uint16_t>(columns) +
static_cast<uint16_t>(column_idx);
if (array_idx < array.size()) {
if (array_idx < array.size())
{
this->matrix[row_idx * columns + column_idx] = array[array_idx];
} else {
}
else
{
this->matrix[row_idx * columns + column_idx] = 0;
}
}
@@ -80,9 +83,12 @@ void Matrix<rows, columns>::setMatrixToArray(
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::Add(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
Matrix<rows, columns> &result) const
{
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
result[row_idx][column_idx] =
this->Get(row_idx, column_idx) + other.Get(row_idx, column_idx);
}
@@ -93,9 +99,12 @@ Matrix<rows, columns>::Add(const Matrix<rows, columns> &other,
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::Sub(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
Matrix<rows, columns> &result) const
{
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
result[row_idx][column_idx] =
this->Get(row_idx, column_idx) - other.Get(row_idx, column_idx);
}
@@ -108,15 +117,18 @@ template <uint8_t rows, uint8_t columns>
template <uint8_t other_columns>
Matrix<rows, other_columns> &
Matrix<rows, columns>::Mult(const Matrix<columns, other_columns> &other,
Matrix<rows, other_columns> &result) const {
Matrix<rows, other_columns> &result) const
{
// allocate some buffers for all of our dot products
Matrix<1, columns> this_row;
Matrix<columns, 1> other_column;
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
// get our row
this->GetRow(row_idx, this_row);
for (uint8_t column_idx{0}; column_idx < other_columns; column_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
// get the other matrix'ss column
other.GetColumn(column_idx, other_column);
@@ -131,9 +143,12 @@ Matrix<rows, columns>::Mult(const Matrix<columns, other_columns> &other,
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::Mult(float scalar, Matrix<rows, columns> &result) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
Matrix<rows, columns>::Mult(float scalar, Matrix<rows, columns> &result) const
{
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
result[row_idx][column_idx] = this->Get(row_idx, column_idx) * scalar;
}
}
@@ -142,7 +157,9 @@ Matrix<rows, columns>::Mult(float scalar, Matrix<rows, columns> &result) const {
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> Matrix<rows, columns>::Invert() const {
Matrix<rows, columns>
Matrix<rows, columns>::Invert() const
{
// since all matrix sizes have to be statically specified at compile time we
// can do this
static_assert(rows == columns,
@@ -152,7 +169,8 @@ Matrix<rows, columns> Matrix<rows, columns>::Invert() const {
// unfortunately we can't calculate this at compile time so we'll just reurn
// zeros
float determinant{this->Det()};
if (determinant == 0) {
if (determinant == 0)
{
// you can't invert a matrix with a negative determinant
result.Fill(0);
return result;
@@ -177,10 +195,14 @@ Matrix<rows, columns> Matrix<rows, columns>::Invert() const {
}
template <uint8_t rows, uint8_t columns>
Matrix<columns, rows> Matrix<rows, columns>::Transpose() const {
Matrix<columns, rows>
Matrix<rows, columns>::Transpose() const
{
Matrix<columns, rows> result{};
for (uint8_t column_idx{0}; column_idx < rows; column_idx++) {
for (uint8_t row_idx{0}; row_idx < columns; row_idx++) {
for (uint8_t column_idx{0}; column_idx < rows; column_idx++)
{
for (uint8_t row_idx{0}; row_idx < columns; row_idx++)
{
result[row_idx][column_idx] = this->Get(column_idx, row_idx);
}
}
@@ -192,19 +214,24 @@ Matrix<columns, rows> Matrix<rows, columns>::Transpose() const {
// the fastest way to calculate a 2x2 matrix determinant
// template <>
// inline float Matrix<0, 0>::Det() const { return 1e+6; }
template <> inline float Matrix<1, 1>::Det() const { return this->matrix[0]; }
template <> inline float Matrix<2, 2>::Det() const {
template <>
inline float Matrix<1, 1>::Det() const { return this->matrix[0]; }
template <>
inline float Matrix<2, 2>::Det() const
{
return this->matrix[0] * this->matrix[3] - this->matrix[1] * this->matrix[2];
}
template <uint8_t rows, uint8_t columns>
float Matrix<rows, columns>::Det() const {
float Matrix<rows, columns>::Det() const
{
static_assert(rows == columns,
"You can't take the determinant of a non-square matrix.");
Matrix<rows - 1, columns - 1> MinorMatrix{};
float determinant{0};
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
// for odd indices the sign is negative
float sign = (column_idx % 2 == 0) ? 1 : -1;
determinant += sign * this->matrix[column_idx] *
@@ -217,9 +244,12 @@ float Matrix<rows, columns>::Det() const {
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::ElementMultiply(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
Matrix<rows, columns> &result) const
{
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
result[row_idx][column_idx] =
this->Get(row_idx, column_idx) * other.Get(row_idx, column_idx);
}
@@ -231,9 +261,12 @@ Matrix<rows, columns>::ElementMultiply(const Matrix<rows, columns> &other,
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::ElementDivide(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
Matrix<rows, columns> &result) const
{
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
result[row_idx][column_idx] =
this->Get(row_idx, column_idx) / other.Get(row_idx, column_idx);
}
@@ -244,8 +277,10 @@ Matrix<rows, columns>::ElementDivide(const Matrix<rows, columns> &other,
template <uint8_t rows, uint8_t columns>
float Matrix<rows, columns>::Get(uint8_t row_index,
uint8_t column_index) const {
if (row_index > rows - 1 || column_index > columns - 1) {
uint8_t column_index) const
{
if (row_index > rows - 1 || column_index > columns - 1)
{
return 1e+10; // TODO: We should throw something here instead of failing
// quietly
}
@@ -255,7 +290,8 @@ float Matrix<rows, columns>::Get(uint8_t row_index,
template <uint8_t rows, uint8_t columns>
Matrix<1, columns> &
Matrix<rows, columns>::GetRow(uint8_t row_index,
Matrix<1, columns> &row) const {
Matrix<1, columns> &row) const
{
memcpy(&(row[0]), this->matrix.begin() + row_index * columns,
columns * sizeof(float));
@@ -265,8 +301,10 @@ Matrix<rows, columns>::GetRow(uint8_t row_index,
template <uint8_t rows, uint8_t columns>
Matrix<rows, 1> &
Matrix<rows, columns>::GetColumn(uint8_t column_index,
Matrix<rows, 1> &column) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
Matrix<rows, 1> &column) const
{
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
column[row_idx][0] = this->Get(row_idx, column_index);
}
@@ -274,13 +312,17 @@ Matrix<rows, columns>::GetColumn(uint8_t column_index,
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::ToString(std::string &stringBuffer) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
void Matrix<rows, columns>::ToString(std::string &stringBuffer) const
{
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
stringBuffer += "|";
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
stringBuffer +=
std::to_string(this->matrix[row_idx * columns + column_idx]);
if (column_idx != columns - 1) {
if (column_idx != columns - 1)
{
stringBuffer += "\t";
}
}
@@ -289,14 +331,11 @@ void Matrix<rows, columns>::ToString(std::string &stringBuffer) const {
}
template <uint8_t rows, uint8_t columns>
const float *Matrix<rows, columns>::ToArray() const {
return this->matrix.data();
}
template <uint8_t rows, uint8_t columns>
std::array<float, columns> &
Matrix<rows, columns>::operator[](uint8_t row_index) {
if (row_index > rows - 1) {
std::array<float, columns> &Matrix<rows, columns>::
operator[](uint8_t row_index)
{
if (row_index > rows - 1)
{
// TODO: We should throw something here instead of failing quietly.
row_index = 0;
}
@@ -307,8 +346,9 @@ Matrix<rows, columns>::operator[](uint8_t row_index) {
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::operator=(const Matrix<rows, columns> &other) {
Matrix<rows, columns> &Matrix<rows, columns>::
operator=(const Matrix<rows, columns> &other)
{
memcpy(this->matrix.begin(), other.matrix.begin(),
rows * columns * sizeof(float));
@@ -317,16 +357,18 @@ Matrix<rows, columns>::operator=(const Matrix<rows, columns> &other) {
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns>
Matrix<rows, columns>::operator+(const Matrix<rows, columns> &other) const {
Matrix<rows, columns> Matrix<rows, columns>::
operator+(const Matrix<rows, columns> &other) const
{
Matrix<rows, columns> buffer{};
this->Add(other, buffer);
return buffer;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns>
Matrix<rows, columns>::operator-(const Matrix<rows, columns> &other) const {
Matrix<rows, columns> Matrix<rows, columns>::
operator-(const Matrix<rows, columns> &other) const
{
Matrix<rows, columns> buffer{};
this->Sub(other, buffer);
return buffer;
@@ -334,42 +376,30 @@ Matrix<rows, columns>::operator-(const Matrix<rows, columns> &other) const {
template <uint8_t rows, uint8_t columns>
template <uint8_t other_columns>
Matrix<rows, other_columns> Matrix<rows, columns>::operator*(
const Matrix<columns, other_columns> &other) const {
Matrix<rows, other_columns> Matrix<rows, columns>::
operator*(const Matrix<columns, other_columns> &other) const
{
Matrix<rows, other_columns> buffer{};
this->Mult(other, buffer);
return buffer;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> Matrix<rows, columns>::operator*(float scalar) const {
Matrix<rows, columns> Matrix<rows, columns>::operator*(float scalar) const
{
Matrix<rows, columns> buffer{};
this->Mult(scalar, buffer);
return buffer;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> Matrix<rows, columns>::operator/(float scalar) const {
Matrix<rows, columns> buffer = *this;
if (scalar == 0) {
buffer.Fill(1e+10);
return buffer;
}
for (uint8_t row = 0; row < rows; row++) {
for (uint8_t column = 0; column < columns; column++) {
buffer[row][column] /= scalar;
}
}
return buffer;
}
template <uint8_t rows, uint8_t columns>
template <uint8_t vector_size>
float Matrix<rows, columns>::DotProduct(const Matrix<1, vector_size> &vec1,
const Matrix<1, vector_size> &vec2) {
const Matrix<1, vector_size> &vec2)
{
float sum{0};
for (uint8_t i{0}; i < vector_size; i++) {
for (uint8_t i{0}; i < vector_size; i++)
{
sum += vec1.Get(0, i) * vec2.Get(0, i);
}
@@ -379,9 +409,11 @@ float Matrix<rows, columns>::DotProduct(const Matrix<1, vector_size> &vec1,
template <uint8_t rows, uint8_t columns>
template <uint8_t vector_size>
float Matrix<rows, columns>::DotProduct(const Matrix<vector_size, 1> &vec1,
const Matrix<vector_size, 1> &vec2) {
const Matrix<vector_size, 1> &vec2)
{
float sum{0};
for (uint8_t i{0}; i < vector_size; i++) {
for (uint8_t i{0}; i < vector_size; i++)
{
sum += vec1.Get(i, 0) * vec2.Get(i, 0);
}
@@ -389,9 +421,12 @@ float Matrix<rows, columns>::DotProduct(const Matrix<vector_size, 1> &vec1,
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::Fill(float value) {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
void Matrix<rows, columns>::Fill(float value)
{
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
this->matrix[row_idx * columns + column_idx] = value;
}
}
@@ -399,11 +434,14 @@ void Matrix<rows, columns>::Fill(float value) {
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::MatrixOfMinors(Matrix<rows, columns> &result) const {
Matrix<rows, columns>::MatrixOfMinors(Matrix<rows, columns> &result) const
{
Matrix<rows - 1, columns - 1> MinorMatrix{};
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
this->MinorMatrix(MinorMatrix, row_idx, column_idx);
result[row_idx][column_idx] = MinorMatrix.Det();
}
@@ -415,15 +453,20 @@ Matrix<rows, columns>::MatrixOfMinors(Matrix<rows, columns> &result) const {
template <uint8_t rows, uint8_t columns>
Matrix<rows - 1, columns - 1> &
Matrix<rows, columns>::MinorMatrix(Matrix<rows - 1, columns - 1> &result,
uint8_t row_idx, uint8_t column_idx) const {
uint8_t row_idx, uint8_t column_idx) const
{
std::array<float, (rows - 1) * (columns - 1)> subArray{};
uint16_t array_idx{0};
for (uint8_t row_iter{0}; row_iter < rows; row_iter++) {
if (row_iter == row_idx) {
for (uint8_t row_iter{0}; row_iter < rows; row_iter++)
{
if (row_iter == row_idx)
{
continue;
}
for (uint8_t column_iter{0}; column_iter < columns; column_iter++) {
if (column_iter == column_idx) {
for (uint8_t column_iter{0}; column_iter < columns; column_iter++)
{
if (column_iter == column_idx)
{
continue;
}
subArray[array_idx] = this->Get(row_iter, column_iter);
@@ -437,9 +480,12 @@ Matrix<rows, columns>::MinorMatrix(Matrix<rows - 1, columns - 1> &result,
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::adjugate(Matrix<rows, columns> &result) const {
for (uint8_t row_iter{0}; row_iter < rows; row_iter++) {
for (uint8_t column_iter{0}; column_iter < columns; column_iter++) {
Matrix<rows, columns>::adjugate(Matrix<rows, columns> &result) const
{
for (uint8_t row_iter{0}; row_iter < rows; row_iter++)
{
for (uint8_t column_iter{0}; column_iter < columns; column_iter++)
{
float sign = ((row_iter + 1) % 2) == 0 ? -1 : 1;
sign *= ((column_iter + 1) % 2) == 0 ? -1 : 1;
result[column_iter][row_iter] = this->Get(row_iter, column_iter) * sign;
@@ -450,34 +496,55 @@ Matrix<rows, columns>::adjugate(Matrix<rows, columns> &result) const {
}
template <uint8_t rows, uint8_t columns>
float Matrix<rows, columns>::EuclideanNorm() const {
Matrix<rows, columns> &
Matrix<rows, columns>::Normalize(Matrix<rows, columns> &result) const
{
float sum{0};
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
float val{this->Get(row_idx, column_idx)};
sum += val * val;
}
}
return sqrt(sum);
if (sum == 0)
{
// this wouldn't do anything anyways
result.Fill(1e+6);
return result;
}
sum = sqrt(sum);
for (uint8_t row_idx{0}; row_idx < rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < columns; column_idx++)
{
result[row_idx][column_idx] = this->Get(row_idx, column_idx) / sum;
}
}
return result;
}
template <uint8_t rows, uint8_t columns>
template <uint8_t sub_rows, uint8_t sub_columns, uint8_t row_offset,
uint8_t column_offset>
Matrix<sub_rows, sub_columns> Matrix<rows, columns>::SubMatrix() const {
template <uint8_t sub_rows, uint8_t sub_columns, uint8_t row_offset, uint8_t column_offset>
Matrix<sub_rows, sub_columns> Matrix<rows, columns>::SubMatrix() const
{
// static assert that sub_rows + row_offset <= rows
// static assert that sub_columns + column_offset <= columns
static_assert(sub_rows + row_offset <= rows,
"The submatrix you're trying to get is out of bounds (rows)");
static_assert(
sub_columns + column_offset <= columns,
"The submatrix you're trying to get is out of bounds (columns)");
static_assert(sub_columns + column_offset <= columns,
"The submatrix you're trying to get is out of bounds (columns)");
Matrix<sub_rows, sub_columns> buffer{};
for (uint8_t row_idx{0}; row_idx < sub_rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < sub_columns; column_idx++) {
for (uint8_t row_idx{0}; row_idx < sub_rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < sub_columns; column_idx++)
{
buffer[row_idx][column_idx] =
this->Get(row_idx + row_offset, column_idx + column_offset);
}
@@ -486,121 +553,21 @@ Matrix<sub_rows, sub_columns> Matrix<rows, columns>::SubMatrix() const {
}
template <uint8_t rows, uint8_t columns>
template <uint8_t sub_rows, uint8_t sub_columns>
void Matrix<rows, columns>::SetSubMatrix(
uint8_t rowOffset, uint8_t columnOffset,
const Matrix<sub_rows, sub_columns> &sub_matrix) {
int16_t adjustedSubRows = sub_rows;
int16_t adjustedSubColumns = sub_columns;
int16_t adjustedRowOffset = rowOffset;
int16_t adjustedColumnOffset = columnOffset;
template <uint8_t sub_rows, uint8_t sub_columns, uint8_t row_offset, uint8_t column_offset>
void Matrix<rows, columns>::SetSubMatrix(const Matrix<sub_rows, sub_columns> &sub_matrix)
{
static_assert(sub_rows + row_offset <= rows,
"The submatrix you're trying to set is out of bounds (rows)");
static_assert(sub_columns + column_offset <= columns,
"The submatrix you're trying to set is out of bounds (columns)");
// a bunch of safety checks to make sure we don't overflow the matrix
if (sub_rows > rows) {
adjustedSubRows = rows;
}
if (sub_columns > columns) {
adjustedSubColumns = columns;
}
if (adjustedSubRows + adjustedRowOffset >= rows) {
adjustedRowOffset =
std::max(0, static_cast<int16_t>(rows) - adjustedSubRows);
}
if (adjustedSubColumns + adjustedColumnOffset >= columns) {
adjustedColumnOffset =
std::max(0, static_cast<int16_t>(columns) - adjustedSubColumns);
}
for (uint8_t row_idx{0}; row_idx < adjustedSubRows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < adjustedSubColumns; column_idx++) {
this->matrix[(row_idx + adjustedRowOffset) * columns + column_idx +
adjustedColumnOffset] = sub_matrix.Get(row_idx, column_idx);
for (uint8_t row_idx{0}; row_idx < sub_rows; row_idx++)
{
for (uint8_t column_idx{0}; column_idx < sub_columns; column_idx++)
{
this->matrix[(row_idx + row_offset) * columns + column_idx + column_offset] = sub_matrix.Get(row_idx, column_idx);
}
}
}
// QR decomposition: decomposes this matrix A into Q and R
// Assumes square matrix
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::QRDecomposition(Matrix<rows, columns> &Q,
Matrix<columns, columns> &R) const {
static_assert(columns <= rows, "QR decomposition requires columns <= rows");
Q.Fill(0);
R.Fill(0);
Matrix<rows, 1> a_col, e, u, Q_column_k{};
Matrix<1, rows> a_T, e_T{};
for (uint8_t column = 0; column < columns; column++) {
this->GetColumn(column, a_col);
u = a_col;
// -----------------------
// ----- CALCULATE Q -----
// -----------------------
for (uint8_t k = 0; k <= column; k++) {
Q.GetColumn(k, Q_column_k);
Matrix<1, rows> Q_column_k_T = Q_column_k.Transpose();
u = u - Q_column_k * (Q_column_k_T * a_col);
}
float norm = u.EuclideanNorm();
if (norm > 1e-4) {
u = u / norm;
} else {
u.Fill(0);
}
Q.SetSubMatrix(0, column, u);
// -----------------------
// ----- CALCULATE R -----
// -----------------------
for (uint8_t k = 0; k <= column; k++) {
Q.GetColumn(k, e);
R[k][column] = (a_col.Transpose() * e).Get(0, 0);
}
}
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::EigenQR(Matrix<rows, rows> &eigenVectors,
Matrix<rows, 1> &eigenValues,
uint32_t maxIterations,
float tolerance) const {
static_assert(rows > 1, "Matrix size must be > 1 for QR iteration");
static_assert(rows == columns, "Matrix size must be square for QR iteration");
Matrix<rows, rows> Ak = *this; // Copy original matrix
Matrix<rows, rows> QQ{Matrix<rows, rows>::Identity()};
Matrix<rows, rows> shift{0};
for (uint32_t iter = 0; iter < maxIterations; ++iter) {
Matrix<rows, rows> Q, R;
// // QR shift lets us "attack" the first diagonal to speed up the algorithm
// shift = Matrix<rows, rows>::Identity() * Ak[rows - 1][rows - 1];
(Ak - shift).QRDecomposition(Q, R);
Ak = R * Q + shift;
QQ = QQ * Q;
// Check convergence: off-diagonal norm
float offDiagSum = 0.0f;
for (uint32_t row = 1; row < rows; row++) {
for (uint32_t column = 0; column < row; column++) {
offDiagSum += fabs(Ak[row][column]);
}
}
if (offDiagSum < tolerance) {
break;
}
}
// Diagonal elements are the eigenvalues
for (uint8_t i = 0; i < rows; i++) {
eigenValues[i][0] = Ak[i][i];
}
eigenVectors = QQ;
}
#endif // MATRIX_H_

View File

@@ -1,4 +1,5 @@
#pragma once
#ifndef MATRIX_H_
#define MATRIX_H_
#include <array>
#include <cstdint>
@@ -18,6 +19,11 @@ public:
*/
Matrix() = default;
/**
* @brief Create a matrix but fill all of its entries with one value
*/
Matrix(float value);
/**
* @brief Initialize a matrix with an array
*/
@@ -34,9 +40,9 @@ public:
template <typename... Args> Matrix(Args... args);
/**
* @brief Create an identity matrix
* @brief set the matrix diagonals to 1 and all other values to 0
*/
static Matrix<rows, columns> Identity();
void Identity();
/**
* @brief Set all elements in this to value
@@ -123,11 +129,10 @@ public:
Matrix<columns, rows> Transpose() const;
/**
* @brief Returns the euclidean magnitude of the matrix. Also known as the L2
* norm
* @brief reduce the matrix so the sum of its elements equal 1
* @param result a buffer to store the result into
*/
float EuclideanNorm() const;
Matrix<rows, columns> &Normalize(Matrix<rows, columns> &result) const;
/**
* @brief Get a row from the matrix
@@ -154,16 +159,8 @@ public:
*/
constexpr uint8_t GetColumnSize() { return columns; }
/**
* @brief Write a string representation of the matrix into the buffer
*/
void ToString(std::string &stringBuffer) const;
/**
* @brief Returns the internal representation of the matrix as an array
*/
const float *ToArray() const;
/**
* @brief Get an element from the matrix
* @param row the row index of the element
@@ -196,15 +193,13 @@ public:
Matrix<rows, columns> operator*(float scalar) const;
Matrix<rows, columns> operator/(float scalar) const;
template <uint8_t sub_rows, uint8_t sub_columns, uint8_t row_offset,
uint8_t column_offset>
Matrix<sub_rows, sub_columns> SubMatrix() const;
template <uint8_t sub_rows, uint8_t sub_columns>
void SetSubMatrix(uint8_t rowOffset, uint8_t columnOffset,
const Matrix<sub_rows, sub_columns> &sub_matrix);
template <uint8_t sub_rows, uint8_t sub_columns, uint8_t row_offset,
uint8_t column_offset>
void SetSubMatrix(const Matrix<sub_rows, sub_columns> &sub_matrix);
/**
* @brief take the dot product of the two vectors
@@ -221,28 +216,6 @@ public:
return vec1.Get(0, 0) * vec2.Get(0, 0);
}
/**
* @brief Performs QR decomposition on this matrix
* @param Q a buffer that will contain Q after the function completes
* @param R a buffer that will contain R after the function completes
*/
void QRDecomposition(Matrix<rows, columns> &Q,
Matrix<columns, columns> &R) const;
/**
* @brief Uses QR decomposition to efficiently calculate the eigenvectors
* and values of this matrix
* @param eigenVectors a buffer that will contain the eigenvectors fo this
* matrix
* @param eigenValues a buffer that will contain the eigenValues fo this
* matrix
* @param maxIterations the number of iterations to perform before giving
* up on reaching the given tolerance
* @param tolerance the level of accuracy to obtain before stopping.
*/
void EigenQR(Matrix<rows, rows> &eigenVectors, Matrix<rows, 1> &eigenValues,
uint32_t maxIterations = 1000, float tolerance = 1e-6f) const;
protected:
std::array<float, rows * columns> matrix;
@@ -252,6 +225,6 @@ private:
void setMatrixToArray(const std::array<float, rows * columns> &array);
};
#ifndef MATRIX_H_
#include "Matrix.cpp"
#endif // MATRIX_H_

View File

@@ -6,115 +6,115 @@
* @param angle The angle to rotate by
* @param axis The axis to rotate around
*/
Quaternion Quaternion::FromAngleAndAxis(float angle, const Matrix<1, 3> &axis) {
const float halfAngle = angle / 2;
const float sinHalfAngle = sin(halfAngle);
Matrix<1, 3> normalizedAxis = axis / axis.EuclideanNorm();
return Quaternion{static_cast<float>(cos(halfAngle)),
normalizedAxis.Get(0, 0) * sinHalfAngle,
normalizedAxis.Get(0, 1) * sinHalfAngle,
normalizedAxis.Get(0, 2) * sinHalfAngle};
Quaternion Quaternion::FromAngleAndAxis(float angle, const Matrix<1, 3> &axis)
{
const float halfAngle = angle / 2;
const float sinHalfAngle = sin(halfAngle);
Matrix<1, 3> normalizedAxis{};
axis.Normalize(normalizedAxis);
return Quaternion{
static_cast<float>(cos(halfAngle)),
normalizedAxis.Get(0, 0) * sinHalfAngle,
normalizedAxis.Get(0, 1) * sinHalfAngle,
normalizedAxis.Get(0, 2) * sinHalfAngle};
}
float Quaternion::operator[](uint8_t index) const {
if (index < 4) {
return this->matrix[index];
}
float Quaternion::operator[](uint8_t index) const
{
if (index < 4)
{
return this->matrix[index];
}
// index out of bounds
return 1e+6;
// index out of bounds
return 1e+6;
}
void Quaternion::operator=(const Quaternion &other) {
memcpy(&(this->matrix), &(other.matrix), 4 * sizeof(float));
void Quaternion::operator=(const Quaternion &other)
{
memcpy(&(this->matrix), &(other.matrix), 4 * sizeof(float));
}
Quaternion Quaternion::operator*(const Quaternion &other) const {
Quaternion result{};
this->Q_Mult(other, result);
return result;
Quaternion Quaternion::operator*(const Quaternion &other) const
{
Quaternion result{};
this->Q_Mult(other, result);
return result;
}
Quaternion Quaternion::operator*(float scalar) const {
return Quaternion{this->w * scalar, this->v1 * scalar, this->v2 * scalar,
this->v3 * scalar};
Quaternion Quaternion::operator*(float scalar) const
{
return Quaternion{this->w * scalar, this->v1 * scalar, this->v2 * scalar, this->v3 * scalar};
}
Quaternion Quaternion::operator+(const Quaternion &other) const {
return Quaternion{this->w + other.w, this->v1 + other.v1, this->v2 + other.v2,
this->v3 + other.v3};
Quaternion Quaternion::operator+(const Quaternion &other) const
{
return Quaternion{this->w + other.w, this->v1 + other.v1, this->v2 + other.v2, this->v3 + other.v3};
}
Quaternion &Quaternion::Q_Mult(const Quaternion &other,
Quaternion &buffer) const {
Quaternion &
Quaternion::Q_Mult(const Quaternion &other, Quaternion &buffer) const
{
// eq. 6
buffer.w = (other.w * this->w - other.v1 * this->v1 - other.v2 * this->v2 -
other.v3 * this->v3);
buffer.v1 = (other.w * this->v1 + other.v1 * this->w - other.v2 * this->v3 +
other.v3 * this->v2);
buffer.v2 = (other.w * this->v2 + other.v1 * this->v3 + other.v2 * this->w -
other.v3 * this->v1);
buffer.v3 = (other.w * this->v3 - other.v1 * this->v2 + other.v2 * this->v1 +
other.v3 * this->w);
return buffer;
// eq. 6
buffer.w = (other.w * this->w - other.v1 * this->v1 - other.v2 * this->v2 - other.v3 * this->v3);
buffer.v1 = (other.w * this->v1 + other.v1 * this->w - other.v2 * this->v3 + other.v3 * this->v2);
buffer.v2 = (other.w * this->v2 + other.v1 * this->v3 + other.v2 * this->w - other.v3 * this->v1);
buffer.v3 = (other.w * this->v3 - other.v1 * this->v2 + other.v2 * this->v1 + other.v3 * this->w);
return buffer;
}
Quaternion &Quaternion::Rotate(Quaternion &other, Quaternion &buffer) const {
Quaternion prime{this->w, -this->v1, -this->v2, -this->v3};
buffer.v1 = other.v1;
buffer.v2 = other.v2;
buffer.v3 = other.v3;
buffer.w = 0;
Quaternion &Quaternion::Rotate(Quaternion &other, Quaternion &buffer) const
{
Quaternion prime{this->w, -this->v1, -this->v2, -this->v3};
buffer.v1 = other.v1;
buffer.v2 = other.v2;
buffer.v3 = other.v3;
buffer.w = 0;
Quaternion temp{};
this->Q_Mult(buffer, temp);
temp.Q_Mult(prime, buffer);
return buffer;
Quaternion temp{};
this->Q_Mult(buffer, temp);
temp.Q_Mult(prime, buffer);
return buffer;
}
void Quaternion::Normalize() {
float magnitude = sqrt(this->v1 * this->v1 + this->v2 * this->v2 +
this->v3 * this->v3 + this->w * this->w);
if (magnitude == 0) {
return;
}
this->v1 /= magnitude;
this->v2 /= magnitude;
this->v3 /= magnitude;
this->w /= magnitude;
void Quaternion::Normalize()
{
float magnitude = sqrt(this->v1 * this->v1 + this->v2 * this->v2 + this->v3 * this->v3 + this->w * this->w);
if (magnitude == 0)
{
return;
}
this->v1 /= magnitude;
this->v2 /= magnitude;
this->v3 /= magnitude;
this->w /= magnitude;
}
Matrix<3, 3> Quaternion::ToRotationMatrix() const {
float xx = this->v1 * this->v1;
float yy = this->v2 * this->v2;
float zz = this->v3 * this->v3;
Matrix<3, 3> rotationMatrix{1 - 2 * (yy - zz),
2 * (this->v1 * this->v2 - this->v3 * this->w),
2 * (this->v1 * this->v3 + this->v2 * this->w),
2 * (this->v1 * this->v2 + this->v3 * this->w),
1 - 2 * (xx - zz),
2 * (this->v2 * this->v3 - this->v1 * this->w),
2 * (this->v1 * this->v3 - this->v2 * this->w),
2 * (this->v2 * this->v3 + this->v1 * this->w),
1 - 2 * (xx - yy)};
return rotationMatrix;
Matrix<3, 3> Quaternion::ToRotationMatrix() const
{
float xx = this->v1 * this->v1;
float yy = this->v2 * this->v2;
float zz = this->v3 * this->v3;
Matrix<3, 3> rotationMatrix{
1 - 2 * (yy - zz), 2 * (this->v1 * this->v2 - this->v3 * this->w), 2 * (this->v1 * this->v3 + this->v2 * this->w),
2 * (this->v1 * this->v2 + this->v3 * this->w), 1 - 2 * (xx - zz), 2 * (this->v2 * this->v3 - this->v1 * this->w),
2 * (this->v1 * this->v3 - this->v2 * this->w), 2 * (this->v2 * this->v3 + this->v1 * this->w), 1 - 2 * (xx - yy)};
return rotationMatrix;
};
Matrix<3, 1> Quaternion::ToEulerAngle() const {
float sqv1 = this->v1 * this->v1;
float sqv2 = this->v2 * this->v2;
float sqv3 = this->v3 * this->v3;
float sqw = this->w * this->w;
Matrix<3, 1> Quaternion::ToEulerAngle() const
{
float sqv1 = this->v1 * this->v1;
float sqv2 = this->v2 * this->v2;
float sqv3 = this->v3 * this->v3;
float sqw = this->w * this->w;
Matrix<3, 1> eulerAngle;
{
atan2(2.0 * (this->v1 * this->v2 + this->v3 * this->w),
(sqv1 - sqv2 - sqv3 + sqw));
asin(-2.0 * (this->v1 * this->v3 - this->v2 * this->w) /
(sqv1 + sqv2 + sqv3 + sqw));
atan2(2.0 * (this->v2 * this->v3 + this->v1 * this->w),
(-sqv1 - sqv2 + sqv3 + sqw));
};
return eulerAngle;
Matrix<3, 1> eulerAngle;
{
atan2(2.0 * (this->v1 * this->v2 + this->v3 * this->w), (sqv1 - sqv2 - sqv3 + sqw));
asin(-2.0 * (this->v1 * this->v3 - this->v2 * this->w) / (sqv1 + sqv2 + sqv3 + sqw));
atan2(2.0 * (this->v2 * this->v3 + this->v1 * this->w), (-sqv1 - sqv2 + sqv3 + sqw));
};
return eulerAngle;
}

View File

@@ -2,89 +2,90 @@
#define QUATERNION_H_
#include "Matrix.hpp"
class Quaternion : public Matrix<1, 4> {
class Quaternion : public Matrix<1, 4>
{
public:
Quaternion() : Matrix<1, 4>() {}
Quaternion(float w, float v1, float v2, float v3)
: Matrix<1, 4>(w, v1, v2, v3) {}
Quaternion(const Quaternion &q) : Matrix<1, 4>(q.w, q.v1, q.v2, q.v3) {}
Quaternion(const Matrix<1, 4> &matrix) : Matrix<1, 4>(matrix) {}
Quaternion(const std::array<float, 4> &array) : Matrix<1, 4>(array) {}
Quaternion() : Matrix<1, 4>() {}
Quaternion(float fillValue) : Matrix<1, 4>(fillValue) {}
Quaternion(float w, float v1, float v2, float v3) : Matrix<1, 4>(w, v1, v2, v3) {}
Quaternion(const Quaternion &q) : Matrix<1, 4>(q.w, q.v1, q.v2, q.v3) {}
Quaternion(const Matrix<1, 4> &matrix) : Matrix<1, 4>(matrix) {}
Quaternion(const std::array<float, 4> &array) : Matrix<1, 4>(array) {}
/**
* @brief Create a quaternion from an angle and axis
* @param angle The angle to rotate by
* @param axis The axis to rotate around
*/
static Quaternion FromAngleAndAxis(float angle, const Matrix<1, 3> &axis);
/**
* @brief Create a quaternion from an angle and axis
* @param angle The angle to rotate by
* @param axis The axis to rotate around
*/
static Quaternion FromAngleAndAxis(float angle, const Matrix<1, 3> &axis);
/**
* @brief Access the elements of the quaternion
* @param index The index of the element to access
* @return The value of the element at the index
*/
float operator[](uint8_t index) const;
/**
* @brief Access the elements of the quaternion
* @param index The index of the element to access
* @return The value of the element at the index
*/
float operator[](uint8_t index) const;
/**
* @brief Assign one quaternion to another
*/
void operator=(const Quaternion &other);
/**
* @brief Assign one quaternion to another
*/
void operator=(const Quaternion &other);
/**
* @brief Do quaternion multiplication
*/
Quaternion operator*(const Quaternion &other) const;
/**
* @brief Do quaternion multiplication
*/
Quaternion operator*(const Quaternion &other) const;
/**
* @brief Multiply the quaternion by a scalar
*/
Quaternion operator*(float scalar) const;
/**
* @brief Multiply the quaternion by a scalar
*/
Quaternion operator*(float scalar) const;
/**
* @brief Add two quaternions together
* @param other The quaternion to add to this one
* @return The net quaternion
*/
Quaternion operator+(const Quaternion &other) const;
/**
* @brief Add two quaternions together
* @param other The quaternion to add to this one
* @return The net quaternion
*/
Quaternion operator+(const Quaternion &other) const;
/**
* @brief Q_Mult a quaternion by another quaternion
* @param other The quaternion to rotate by
* @param buffer The buffer to store the result in
* @return A reference to the buffer
*/
Quaternion &Q_Mult(const Quaternion &other, Quaternion &buffer) const;
/**
* @brief Q_Mult a quaternion by another quaternion
* @param other The quaternion to rotate by
* @param buffer The buffer to store the result in
* @return A reference to the buffer
*/
Quaternion &Q_Mult(const Quaternion &other, Quaternion &buffer) const;
/**
* @brief Rotate a quaternion by this quaternion
* @param other The quaternion to rotate
* @param buffer The buffer to store the result in
*
*/
Quaternion &Rotate(Quaternion &other, Quaternion &buffer) const;
/**
* @brief Rotate a quaternion by this quaternion
* @param other The quaternion to rotate
* @param buffer The buffer to store the result in
*
*/
Quaternion &Rotate(Quaternion &other, Quaternion &buffer) const;
/**
* @brief Normalize the quaternion to a magnitude of 1
*/
void Normalize();
/**
* @brief Normalize the quaternion to a magnitude of 1
*/
void Normalize();
/**
* @brief Convert the quaternion to a rotation matrix
* @return The rotation matrix
*/
Matrix<3, 3> ToRotationMatrix() const;
/**
* @brief Convert the quaternion to a rotation matrix
* @return The rotation matrix
*/
Matrix<3, 3> ToRotationMatrix() const;
/**
* @brief Convert the quaternion to an Euler angle representation
* @return The Euler angle representation of the quaternion
*/
Matrix<3, 1> ToEulerAngle() const;
/**
* @brief Convert the quaternion to an Euler angle representation
* @return The Euler angle representation of the quaternion
*/
Matrix<3, 1> ToEulerAngle() const;
// Give people an easy way to access the elements
float &w{matrix[0]};
float &v1{matrix[1]};
float &v2{matrix[2]};
float &v3{matrix[3]};
// Give people an easy way to access the elements
float &w{matrix[0]};
float &v1{matrix[1]};
float &v2{matrix[2]};
float &v3{matrix[3]};
};
#endif // QUATERNION_H_

View File

@@ -10,61 +10,41 @@
#include <cmath>
#include <iostream>
// Helper functions
template <uint8_t rows, uint8_t columns>
float matrixSum(const Matrix<rows, columns> &matrix) {
float sum = 0;
for (uint32_t i = 0; i < rows * columns; i++) {
float number = matrix.ToArray()[i];
sum += number * number;
}
return std::sqrt(sum);
}
template <uint8_t rows, uint8_t columns>
void printLabeledMatrix(const std::string &label,
const Matrix<rows, columns> &matrix) {
std::string strBuf = "";
matrix.ToString(strBuf);
std::cout << label << ":\n" << strBuf << std::endl;
}
TEST_CASE("Initialization", "Matrix") {
SECTION("Array Initialization") {
std::array<float, 4> arr2{5, 6, 7, 8};
Matrix<2, 2> mat2{arr2};
// array initialization
REQUIRE(mat2.Get(0, 0) == 5);
REQUIRE(mat2.Get(0, 1) == 6);
REQUIRE(mat2.Get(1, 0) == 7);
REQUIRE(mat2.Get(1, 1) == 8);
}
SECTION("Argument Pack Initialization") {
Matrix<2, 2> mat1{1, 2, 3, 4};
// template pack initialization
REQUIRE(mat1.Get(0, 0) == 1);
REQUIRE(mat1.Get(0, 1) == 2);
REQUIRE(mat1.Get(1, 0) == 3);
REQUIRE(mat1.Get(1, 1) == 4);
}
SECTION("Single Argument Pack Initialization") {
Matrix<2, 2> mat1{2};
// template pack initialization
REQUIRE(mat1.Get(0, 0) == 2);
REQUIRE(mat1.Get(0, 1) == 2);
REQUIRE(mat1.Get(1, 0) == 2);
REQUIRE(mat1.Get(1, 1) == 2);
}
}
TEST_CASE("Elementary Matrix Operations", "Matrix") {
std::array<float, 4> arr2{5, 6, 7, 8};
Matrix<2, 2> mat1{1, 2, 3, 4};
Matrix<2, 2> mat2{arr2};
Matrix<2, 2> mat3{};
SECTION("Initialization") {
// array initialization
REQUIRE(mat1.Get(0, 0) == 1);
REQUIRE(mat1.Get(0, 1) == 2);
REQUIRE(mat1.Get(1, 0) == 3);
REQUIRE(mat1.Get(1, 1) == 4);
// empty initialization
REQUIRE(mat3.Get(0, 0) == 0);
REQUIRE(mat3.Get(0, 1) == 0);
REQUIRE(mat3.Get(1, 0) == 0);
REQUIRE(mat3.Get(1, 1) == 0);
// template pack initialization
REQUIRE(mat2.Get(0, 0) == 5);
REQUIRE(mat2.Get(0, 1) == 6);
REQUIRE(mat2.Get(1, 0) == 7);
REQUIRE(mat2.Get(1, 1) == 8);
// large matrix
Matrix<255, 255> mat6{};
mat6.Fill(4);
for (uint8_t row{0}; row < 255; row++) {
for (uint8_t column{0}; column < 255; column++) {
REQUIRE(mat6.Get(row, column) == 4);
}
}
}
SECTION("Fill") {
mat1.Fill(0);
REQUIRE(mat1.Get(0, 0) == 0);
@@ -86,6 +66,10 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
}
SECTION("Addition") {
std::string strBuf1 = "";
mat1.ToString(strBuf1);
std::cout << "Matrix 1:\n" << strBuf1 << std::endl;
mat1.Add(mat2, mat3);
REQUIRE(mat3.Get(0, 0) == 6);
@@ -135,35 +119,7 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
REQUIRE(mat3.Get(1, 0) == 43);
REQUIRE(mat3.Get(1, 1) == 50);
// Non-square multiplication
Matrix<2, 4> mat4{1, 2, 3, 4, 5, 6, 7, 8};
Matrix<4, 2> mat5{9, 10, 11, 12, 13, 14, 15, 16};
Matrix<2, 2> mat6{};
mat6 = mat4 * mat5;
REQUIRE(mat6.Get(0, 0) == 130);
REQUIRE(mat6.Get(0, 1) == 140);
REQUIRE(mat6.Get(1, 0) == 322);
REQUIRE(mat6.Get(1, 1) == 348);
// One more non-square multiplicaiton
Matrix<4, 4> mat7{};
mat7 = mat5 * mat4;
REQUIRE(mat7.Get(0, 0) == 59);
REQUIRE(mat7.Get(0, 1) == 78);
REQUIRE(mat7.Get(0, 2) == 97);
REQUIRE(mat7.Get(0, 3) == 116);
REQUIRE(mat7.Get(1, 0) == 71);
REQUIRE(mat7.Get(1, 1) == 94);
REQUIRE(mat7.Get(1, 2) == 117);
REQUIRE(mat7.Get(1, 3) == 140);
REQUIRE(mat7.Get(2, 0) == 83);
REQUIRE(mat7.Get(2, 1) == 110);
REQUIRE(mat7.Get(2, 2) == 137);
REQUIRE(mat7.Get(2, 3) == 164);
REQUIRE(mat7.Get(3, 0) == 95);
REQUIRE(mat7.Get(3, 1) == 126);
REQUIRE(mat7.Get(3, 2) == 157);
REQUIRE(mat7.Get(3, 3) == 188);
// TODO: You need to add non-square multiplications to this.
}
SECTION("Scalar Multiplication") {
@@ -298,6 +254,26 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
REQUIRE(mat5.Get(2, 1) == 6);
}
SECTION("Normalize") {
mat1.Normalize(mat3);
float sqrt_30{sqrt(30)};
REQUIRE(mat3.Get(0, 0) == 1 / sqrt_30);
REQUIRE(mat3.Get(0, 1) == 2 / sqrt_30);
REQUIRE(mat3.Get(1, 0) == 3 / sqrt_30);
REQUIRE(mat3.Get(1, 1) == 4 / sqrt_30);
Matrix<2, 1> mat4{-0.878877044, 2.92092276};
Matrix<2, 1> mat5{};
mat4.Normalize(mat5);
REQUIRE_THAT(mat5.Get(0, 0),
Catch::Matchers::WithinRel(-0.288129855179f, 1e-6f));
REQUIRE_THAT(mat5.Get(1, 0),
Catch::Matchers::WithinRel(0.957591346325f, 1e-6f));
}
SECTION("GET ROW") {
Matrix<1, 2> mat1Rows{};
mat1.GetRow(0, mat1Rows);
@@ -352,289 +328,29 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
Matrix<3, 3> mat4 = startMatrix;
Matrix<2, 2> mat5{10, 11, 12, 13};
mat4.SetSubMatrix(0, 0, mat5);
mat4.SetSubMatrix<2, 2, 0, 0>(mat5);
REQUIRE(mat4.Get(0, 0) == 10);
REQUIRE(mat4.Get(0, 1) == 11);
REQUIRE(mat4.Get(1, 0) == 12);
REQUIRE(mat4.Get(1, 1) == 13);
mat4 = startMatrix;
mat4.SetSubMatrix(1, 1, mat5);
mat4.SetSubMatrix<2, 2, 1, 1>(mat5);
REQUIRE(mat4.Get(1, 1) == 10);
REQUIRE(mat4.Get(1, 2) == 11);
REQUIRE(mat4.Get(2, 1) == 12);
REQUIRE(mat4.Get(2, 2) == 13);
Matrix<3, 1> mat6{10, 11, 12};
mat4.SetSubMatrix(0, 0, mat6);
mat4.SetSubMatrix<3, 1, 0, 0>(mat6);
REQUIRE(mat4.Get(0, 0) == 10);
REQUIRE(mat4.Get(1, 0) == 11);
REQUIRE(mat4.Get(2, 0) == 12);
Matrix<1, 3> mat7{10, 11, 12};
mat4.SetSubMatrix(0, 0, mat7);
mat4.SetSubMatrix<1, 3, 0, 0>(mat7);
REQUIRE(mat4.Get(0, 0) == 10);
REQUIRE(mat4.Get(0, 1) == 11);
REQUIRE(mat4.Get(0, 2) == 12);
}
}
TEST_CASE("Identity Matrix", "Matrix") {
SECTION("Square Matrix") {
Matrix<5, 5> matrix = Matrix<5, 5>::Identity();
uint32_t oneColumnIndex{0};
for (uint32_t row = 0; row < 5; row++) {
for (uint32_t column = 0; column < 5; column++) {
float value = matrix[row][column];
if (oneColumnIndex == column) {
REQUIRE_THAT(value, Catch::Matchers::WithinRel(1.0f, 1e-6f));
} else {
REQUIRE_THAT(value, Catch::Matchers::WithinRel(0.0f, 1e-6f));
}
}
oneColumnIndex++;
}
}
SECTION("Wide Matrix") {
Matrix<2, 5> matrix = Matrix<2, 5>::Identity();
uint32_t oneColumnIndex{0};
for (uint32_t row = 0; row < 2; row++) {
for (uint32_t column = 0; column < 5; column++) {
float value = matrix[row][column];
if (oneColumnIndex == column && row < 3) {
REQUIRE_THAT(value, Catch::Matchers::WithinRel(1.0f, 1e-6f));
} else {
REQUIRE_THAT(value, Catch::Matchers::WithinRel(0.0f, 1e-6f));
}
}
oneColumnIndex++;
}
}
SECTION("Tall Matrix") {
Matrix<5, 2> matrix = Matrix<5, 2>::Identity();
uint32_t oneColumnIndex{0};
for (uint32_t row = 0; row < 5; row++) {
for (uint32_t column = 0; column < 2; column++) {
float value = matrix[row][column];
if (oneColumnIndex == column) {
REQUIRE_THAT(value, Catch::Matchers::WithinRel(1.0f, 1e-6f));
} else {
REQUIRE_THAT(value, Catch::Matchers::WithinRel(0.0f, 1e-6f));
}
}
oneColumnIndex++;
}
}
}
// TODO: Add test for scalar division
TEST_CASE("Euclidean Norm", "Matrix") {
SECTION("2x2 Normalize") {
Matrix<2, 2> mat1{1, 2, 3, 4};
Matrix<2, 2> mat2{};
mat2 = mat1 / mat1.EuclideanNorm();
float sqrt_30{static_cast<float>(sqrt(30.0f))};
REQUIRE(mat2.Get(0, 0) == 1 / sqrt_30);
REQUIRE(mat2.Get(0, 1) == 2 / sqrt_30);
REQUIRE(mat2.Get(1, 0) == 3 / sqrt_30);
REQUIRE(mat2.Get(1, 1) == 4 / sqrt_30);
REQUIRE_THAT(matrixSum(mat2), Catch::Matchers::WithinRel(1.0f, 1e-6f));
}
SECTION("2x1 (Vector) Normalize") {
Matrix<2, 1> mat1{-0.878877044, 2.92092276};
Matrix<2, 1> mat2{};
mat2 = mat1 / mat1.EuclideanNorm();
REQUIRE_THAT(mat2.Get(0, 0),
Catch::Matchers::WithinRel(-0.288129855179f, 1e-6f));
REQUIRE_THAT(mat2.Get(1, 0),
Catch::Matchers::WithinRel(0.957591346325f, 1e-6f));
float sum = matrixSum(mat2);
REQUIRE_THAT(sum, Catch::Matchers::WithinRel(1.0f, 1e-6f));
}
SECTION("Normalized vectors sum to 1") {
Matrix<9, 1> mat1{1, 2, 3, 4, 5, 6, 7, 8, 9};
Matrix<9, 1> mat2;
mat2 = mat1 / mat1.EuclideanNorm();
float sum = matrixSum(mat2);
REQUIRE_THAT(sum, Catch::Matchers::WithinRel(1.0f, 1e-6f));
Matrix<2, 3> mat3{1, 2, 3, 4, 5, 6};
Matrix<2, 3> mat4{};
mat4 = mat3 / mat3.EuclideanNorm();
sum = matrixSum(mat4);
REQUIRE_THAT(sum, Catch::Matchers::WithinRel(1.0f, 1e-6f));
}
}
TEST_CASE("QR Decompositions", "Matrix") {
SECTION("2x2 QRDecomposition") {
Matrix<2, 2> A{1.0f, 2.0f, 3.0f, 4.0f};
Matrix<2, 2> Q{}, R{};
A.QRDecomposition(Q, R);
// Check that Q * R ≈ A
Matrix<2, 2> QR{};
Q.Mult(R, QR);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
REQUIRE_THAT(QR[i][j], Catch::Matchers::WithinRel(A[i][j], 1e-4f));
}
}
// Check that Q is orthonormal: Qᵀ * Q ≈ I
Matrix<2, 2> Qt = Q.Transpose();
Matrix<2, 2> QtQ{};
Qt.Mult(Q, QtQ);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
if (i == j)
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinRel(1.0f, 1e-4f));
else
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinAbs(0.0f, 1e-4f));
}
}
// Optional: R should be upper triangular
REQUIRE(std::fabs(R[1][0]) < 1e-4f);
// check that all Q values are correct
REQUIRE_THAT(Q[0][0], Catch::Matchers::WithinRel(0.3162f, 1e-4f));
REQUIRE_THAT(Q[0][1], Catch::Matchers::WithinRel(0.94868f, 1e-4f));
REQUIRE_THAT(Q[1][0], Catch::Matchers::WithinRel(0.94868f, 1e-4f));
REQUIRE_THAT(Q[1][1], Catch::Matchers::WithinRel(-0.3162f, 1e-4f));
// check that all R values are correct
REQUIRE_THAT(R[0][0], Catch::Matchers::WithinRel(3.16228f, 1e-4f));
REQUIRE_THAT(R[0][1], Catch::Matchers::WithinRel(4.42719f, 1e-4f));
REQUIRE_THAT(R[1][0], Catch::Matchers::WithinRel(0.0f, 1e-4f));
REQUIRE_THAT(R[1][1], Catch::Matchers::WithinRel(0.63246f, 1e-4f));
}
SECTION("3x3 QRDecomposition") {
// this symmetrix tridiagonal matrix is well behaved for testing
Matrix<3, 3> A{1, 2, 3, 4, 5, 6, 7, 8, 9};
Matrix<3, 3> Q{}, R{};
A.QRDecomposition(Q, R);
// Check that Q * R ≈ A
Matrix<3, 3> QR{};
QR = Q * R;
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
REQUIRE_THAT(QR[i][j], Catch::Matchers::WithinRel(A[i][j], 1e-4f));
}
}
// Check that Qᵀ * Q ≈ I
// Since the rank of this matrix is 2, only the top left 2x2 sub-matrix will
// equal I.
Matrix<3, 3> Qt = Q.Transpose();
Matrix<3, 3> QtQ{};
QtQ = Qt * Q;
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
if (i == j)
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinRel(1.0f, 1e-4f));
else
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinAbs(0.0f, 1e-4f));
}
}
// Optional: Check R is upper triangular
for (int i = 1; i < 3; ++i) {
for (int j = 0; j < i; ++j) {
REQUIRE(std::fabs(R[i][j]) < 1e-4f);
}
}
}
SECTION("4x2 QRDecomposition") {
// A simple 4x2 matrix
Matrix<4, 2> A{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f};
Matrix<4, 2> Q{};
Matrix<2, 2> R{};
A.QRDecomposition(Q, R);
// Check that Q * R ≈ A
Matrix<4, 2> QR{};
Q.Mult(R, QR);
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 2; ++j) {
REQUIRE_THAT(QR[i][j], Catch::Matchers::WithinRel(A[i][j], 1e-4f));
}
}
// Check that Qᵀ * Q ≈ I₂
Matrix<2, 4> Qt = Q.Transpose();
Matrix<2, 2> QtQ{};
Qt.Mult(Q, QtQ);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
if (i == j)
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinRel(1.0f, 1e-4f));
else
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinAbs(0.0f, 1e-4f));
}
}
// Check R is upper triangular (i > j ⇒ R[i][j] ≈ 0)
for (int i = 1; i < 2; ++i) {
for (int j = 0; j < i; ++j) {
REQUIRE(std::fabs(R[i][j]) < 1e-4f);
}
}
}
}
TEST_CASE("Eigenvalues and Vectors", "Matrix") {
SECTION("2x2 Eigen") {
Matrix<2, 2> A{1.0f, 2.0f, 3.0f, 4.0f};
Matrix<2, 2> vectors{};
Matrix<2, 1> values{};
A.EigenQR(vectors, values, 1000000, 1e-20f);
REQUIRE_THAT(vectors[0][0], Catch::Matchers::WithinRel(0.41597f, 1e-4f));
REQUIRE_THAT(vectors[1][0], Catch::Matchers::WithinRel(0.90938f, 1e-4f));
REQUIRE_THAT(values[0][0], Catch::Matchers::WithinRel(5.372282f, 1e-4f));
REQUIRE_THAT(values[1][0], Catch::Matchers::WithinRel(-0.372281f, 1e-4f));
}
SECTION("3x3 Rank Defficient Eigen") {
SKIP("Skipping this because QR decomposition isn't ready for it");
// this symmetrix tridiagonal matrix is well behaved for testing
Matrix<3, 3> A{1, 2, 3, 4, 5, 6, 7, 8, 9};
Matrix<3, 3> vectors{};
Matrix<3, 1> values{};
A.EigenQR(vectors, values, 1000000, 1e-8f);
std::string strBuf1 = "";
vectors.ToString(strBuf1);
std::cout << "Vectors:\n" << strBuf1 << std::endl;
strBuf1 = "";
values.ToString(strBuf1);
std::cout << "Values:\n" << strBuf1 << std::endl;
REQUIRE_THAT(vectors[0][0], Catch::Matchers::WithinRel(0.23197f, 1e-4f));
REQUIRE_THAT(vectors[1][0], Catch::Matchers::WithinRel(0.525322f, 1e-4f));
REQUIRE_THAT(vectors[2][0], Catch::Matchers::WithinRel(0.81867f, 1e-4f));
REQUIRE_THAT(values[0][0], Catch::Matchers::WithinRel(-1.11684f, 1e-4f));
REQUIRE_THAT(values[1][0], Catch::Matchers::WithinRel(0.0f, 1e-4f));
REQUIRE_THAT(values[2][0], Catch::Matchers::WithinRel(16.1168f, 1e-4f));
}
}

View File

@@ -8,7 +8,6 @@
// any other libraries
#include <array>
#include <cmath>
#include <cstdint>
// basically re-run all of the matrix tests with huge matrices and time the
// results.
@@ -30,13 +29,13 @@ TEST_CASE("Timing Tests", "Matrix") {
Matrix<4, 4> mat5{};
SECTION("Addition") {
for (uint32_t i{0}; i < 100000; i++) {
for (uint32_t i{0}; i < 10000; i++) {
mat3 = mat1 + mat2;
}
}
SECTION("Subtraction") {
for (uint32_t i{0}; i < 100000; i++) {
for (uint32_t i{0}; i < 10000; i++) {
mat3 = mat1 - mat2;
}
}
@@ -48,19 +47,19 @@ TEST_CASE("Timing Tests", "Matrix") {
}
SECTION("Scalar Multiplication") {
for (uint32_t i{0}; i < 100000; i++) {
for (uint32_t i{0}; i < 10000; i++) {
mat3 = mat1 * 3;
}
}
SECTION("Element Multiply") {
for (uint32_t i{0}; i < 100000; i++) {
for (uint32_t i{0}; i < 10000; i++) {
mat1.ElementMultiply(mat2, mat3);
}
}
SECTION("Element Divide") {
for (uint32_t i{0}; i < 100000; i++) {
for (uint32_t i{0}; i < 10000; i++) {
mat1.ElementDivide(mat2, mat3);
}
}
@@ -69,59 +68,52 @@ TEST_CASE("Timing Tests", "Matrix") {
// what about matrices of 0,0 or 1,1?
// minor matrix for 2x2 matrix
Matrix<49, 49> minorMat1{};
for (uint32_t i{0}; i < 100000; i++) {
for (uint32_t i{0}; i < 10000; i++) {
mat1.MinorMatrix(minorMat1, 0, 0);
}
}
SECTION("Determinant") {
for (uint32_t i{0}; i < 1000000; i++) {
for (uint32_t i{0}; i < 100000; i++) {
float det1 = mat4.Det();
}
}
SECTION("Matrix of Minors") {
for (uint32_t i{0}; i < 1000000; i++) {
for (uint32_t i{0}; i < 100000; i++) {
mat4.MatrixOfMinors(mat5);
}
}
SECTION("Invert") {
for (uint32_t i{0}; i < 1000000; i++) {
for (uint32_t i{0}; i < 100000; i++) {
mat5 = mat4.Invert();
}
};
SECTION("Transpose") {
for (uint32_t i{0}; i < 100000; i++) {
for (uint32_t i{0}; i < 10000; i++) {
mat3 = mat1.Transpose();
}
}
SECTION("Normalize") {
for (uint32_t i{0}; i < 100000; i++) {
mat3 = mat1 / mat1.EuclideanNorm();
for (uint32_t i{0}; i < 10000; i++) {
mat1.Normalize(mat3);
}
}
SECTION("GET ROW") {
Matrix<1, 50> mat1Rows{};
for (uint32_t i{0}; i < 100000000; i++) {
for (uint32_t i{0}; i < 1000000; i++) {
mat1.GetRow(0, mat1Rows);
}
}
SECTION("GET COLUMN") {
Matrix<50, 1> mat1Columns{};
for (uint32_t i{0}; i < 100000000; i++) {
for (uint32_t i{0}; i < 1000000; i++) {
mat1.GetColumn(0, mat1Columns);
}
}
SECTION("QR Decomposition") {
Matrix<50, 50> Q, R{};
for (uint32_t i{0}; i < 500; i++) {
mat1.QRDecomposition(Q, R);
}
}
}

View File

@@ -1,36 +1,56 @@
Running matrix-timing-tests with timing
Randomness seeded to: 3567651885
1.857 s: Addition
1.857 s: Timing Tests
1.788 s: Subtraction
1.788 s: Timing Tests
1.929 s: Multiplication
1.929 s: Timing Tests
1.268 s: Scalar Multiplication
1.268 s: Timing Tests
1.798 s: Element Multiply
1.798 s: Timing Tests
1.802 s: Element Divide
1.803 s: Timing Tests
1.553 s: Minor Matrix
1.554 s: Timing Tests
1.009 s: Determinant
1.009 s: Timing Tests
4.076 s: Matrix of Minors
4.076 s: Timing Tests
1.066 s: Invert
1.066 s: Timing Tests
1.246 s: Transpose
1.246 s: Timing Tests
2.284 s: Normalize
2.284 s: Timing Tests
0.606 s: GET ROW
0.606 s: Timing Tests
24.629 s: GET COLUMN
24.630 s: Timing Tests
3.064 s: QR Decomposition
3.064 s: Timing Tests
Randomness seeded to: 2310772973
0.174 s: Addition
0.174 s: Timing Tests
0.169 s: Subtraction
0.169 s: Timing Tests
20 s: Multiplication
1.853 s: Timing Tests
0.121 s: Scalar Multiplication
0.121 s: Timing Tests
0.177 s: Element Multiply
0.177 s: Timing Tests
0.168 s: Element Divide
0.168 s: Timing Tests
0.150 s: Minor Matrix
0.150 s: Timing Tests
0.102 s: Determinant
0.102 s: Timing Tests
0.419 s: Matrix of Minors
0.419 s: Timing Tests
0.110 s: Invert
0.110 s: Timing Tests
0.123 s: Transpose
0.123 s: Timing Tests
0.189 s: Normalize
0.189 s: Timing Tests
0.006 s: GET ROW
0.006 s: Timing Tests
0.229 s: GET COLUMN
0.229 s: Timing Tests
===============================================================================
test cases: 1 | 1 passed
assertions: - none -
Command being timed: "build/unit-tests/matrix-timing-tests -d yes"
User time (seconds): 3.98
System time (seconds): 0.00
Percent of CPU this job got: 99%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:03.99
Average shared text size (kbytes): 0
Average unshared data size (kbytes): 0
Average stack size (kbytes): 0
Average total size (kbytes): 0
Maximum resident set size (kbytes): 3200
Average resident set size (kbytes): 0
Major (requiring I/O) page faults: 184
Minor (reclaiming a frame) page faults: 172
Voluntary context switches: 1
Involuntary context switches: 10
Swaps: 0
File system inputs: 12
File system outputs: 1
Socket messages sent: 0
Socket messages received: 0
Signals delivered: 0
Page size (bytes): 4096
Exit status: 0