Compare commits

..

4 Commits

Author SHA1 Message Date
Quinn Henthorne
0b55d29376 Working on getting the QR decomposition to compile 2024-12-18 16:30:53 -05:00
Quinn Henthorne
0f76e8511e Added an untested eigen function 2024-12-16 10:36:02 -05:00
Quinn Henthorne
002f3ac314 Added a function for SVD in python 2024-12-16 10:23:21 -05:00
Quinn Henthorne
6c47a491ea Added an example QR decomposition function in python 2024-12-16 09:18:43 -05:00
27 changed files with 693 additions and 1714 deletions

Binary file not shown.

View File

@@ -1,102 +0,0 @@
name: Merge-Checker
on:
pull_request:
branches: ["**"]
jobs:
build_and_test:
runs-on: ubuntu-latest
steps:
- name: Checkout source code
uses: actions/checkout@v3
with:
persist-credentials: true
fetch-depth: 0
- name: Install dependencies (CMake + Ninja + build tools)
run: |
sudo apt-get update
sudo apt-get install -y cmake ninja-build build-essential time git
- name: Configure project with CMake
run: cmake -G Ninja -S . -B build/
- name: Build with Ninja
run: ninja -C build/
- name: Run all unit tests except matrix-timing-tests
run: |
for test_exec in build/unit-tests/matrix-tests build/unit-tests/quaternion-tests build/unit-tests/vector-3d-tests; do
if [ -x "$test_exec" ]; then
echo "Running $test_exec"
"$test_exec"
else
echo "Warning: $test_exec not found or not executable"
fi
done
- name: Run matrix-timing-tests
run: |
mkdir -p unit-tests/timing-results
if [ -x build/unit-tests/matrix-timing-tests ]; then
echo "Running matrix-timing-tests with timing"
/usr/bin/time -v build/unit-tests/matrix-timing-tests -d yes &> unit-tests/timing-results/matrix-timing-tests.txt
cat unit-tests/timing-results/matrix-timing-tests.txt
else
echo "matrix-timing-tests executable not found or not executable"
exit 1
fi
- name: Compare timing results
id: check_diff
run: |
git show origin/${{ github.event.pull_request.head.ref }}:unit-tests/timing-results/matrix-timing-tests.txt > old.txt || echo "" > old.txt
cp unit-tests/timing-results/matrix-timing-tests.txt new.txt
echo "Comparing timing results for changes ≥ 0.1s (ignoring 'Timing Tests' lines)..."
changed=0
awk -v changed_ref=/tmp/timings_changed.flag '
BEGIN {
change_threshold = 0.1
}
FILENAME == "old.txt" && /^[0-9]+\.[0-9]+ s: / {
label = substr($0, index($0, ":") + 2)
if (label != "Timing Tests") {
label_times[label] = $1
}
}
FILENAME == "new.txt" && /^[0-9]+\.[0-9]+ s: / {
new_time = $1
label = substr($0, index($0, ":") + 2)
if (label == "Timing Tests") next
old_time = label_times[label]
delta = new_time - old_time
if (delta < 0) delta = -delta
if (old_time != "" && delta >= change_threshold) {
printf "⚠️ %.3f s → %.3f s: %s (Δ=%.3f s)\n", old_time, new_time, label, delta
system("touch " changed_ref)
} else if (old_time == "") {
printf "🆕 New timing entry: %.3f s: %s\n", new_time, label
system("touch " changed_ref)
}
}
END {
if (!system("test -f " changed_ref)) {
exit 0
} else {
print "✅ Timings havent changed significantly (Δ < 0.1s)."
exit 0
}
}
' old.txt new.txt
if [ -f /tmp/timings_changed.flag ]; then
echo "timings_changed=true" >> $GITHUB_OUTPUT
else
echo "timings_changed=false" >> $GITHUB_OUTPUT
fi

2
.gitignore vendored
View File

@@ -1,2 +1,2 @@
build/
.cache/
venv/

17
.vscode/launch.json vendored
View File

@@ -27,25 +27,16 @@
"internalConsoleOptions": "openOnSessionStart"
},
{
"name": "Debug Quaternion Unit Tests",
"type": "cppdbg",
"name": "Run Matrix Unit Tests",
"type": "cpp",
"request": "launch",
"program": "${workspaceFolder}/build/unit-tests/quaternion-tests",
"program": "${workspaceFolder}/build/unit-tests/matrix-tests",
"args": [],
"stopAtEntry": false,
"cwd": "${workspaceFolder}",
"environment": [],
"externalConsole": false,
"MIMode": "gdb",
"miDebuggerPath": "/usr/bin/gdb", // Adjust to your debugger path
"setupCommands": [
{
"description": "Enable pretty-printing for gdb",
"text": "-enable-pretty-printing",
"ignoreFailures": true
}
],
"preLaunchTask": "build_tests", // Task to compile unit tests
"preLaunchTask": "build_tests", // Compile unit tests before running
"internalConsoleOptions": "openOnSessionStart"
}
]

17
.vscode/settings.json vendored
View File

@@ -1,5 +1,8 @@
{
"C_Cpp.intelliSenseEngine": "default",
"clangd.arguments": [
"--include-directory=build/unit-tests"
],
"C_Cpp.default.intelliSenseMode": "linux-gcc-x64",
"files.associations": {
"*.h": "cpp",
@@ -68,16 +71,8 @@
"typeinfo": "cpp",
"variant": "cpp",
"shared_mutex": "cpp",
"charconv": "cpp",
"format": "cpp",
"csignal": "cpp",
"span": "cpp"
"complex": "cpp"
},
"clangd.enable": true,
"C_Cpp.dimInactiveRegions": false,
"editor.defaultFormatter": "xaver.clang-format",
"clangd.inactiveRegions.useBackgroundHighlight": false,
"clangd.arguments": [
"--compile-commands-dir=${workspaceFolder}/build"
],
"clangd.enable": false,
"C_Cpp.dimInactiveRegions": false
}

6
.vscode/tasks.json vendored
View File

@@ -4,14 +4,12 @@
{
"label": "build_tests",
"type": "shell",
"command": "cd build && ninja",
"command": "cd build && ninja matrix-tests",
"group": {
"kind": "build",
"isDefault": true
},
"problemMatcher": [
"$gcc"
],
"problemMatcher": ["$gcc"],
"detail": "Generated task to build unit test executable"
}
]

View File

@@ -1,21 +1,40 @@
cmake_minimum_required (VERSION 3.11)
cmake_minimum_required(VERSION 3.6)
project(Vector3D)
add_subdirectory(src)
add_subdirectory(unit-tests)
set(CMAKE_CXX_STANDARD 11)
add_compile_options(-Wall -Wextra -Wpedantic)
add_compile_options (-fdiagnostics-color=always)
set(CMAKE_COLOR_DIAGNOSTICS ON)
add_compile_options(-fdiagnostics-color=always)
include(FetchContent)
FetchContent_Declare(
Catch2
GIT_REPOSITORY https://github.com/catchorg/Catch2.git
GIT_TAG v3.8.0 # or a later release
# Vector3d
add_library(Vector3D
STATIC
Vector3D.hpp
)
FetchContent_MakeAvailable(Catch2)
set_target_properties(Vector3D
PROPERTIES
LINKER_LANGUAGE CXX
)
target_include_directories(Vector3D PUBLIC
include
)
# Matrix
add_library(Matrix
STATIC
Matrix.hpp
Matrix.cpp
)
set_target_properties(Matrix
PROPERTIES
LINKER_LANGUAGE CXX
)
target_include_directories(Matrix
PUBLIC
.
)

View File

@@ -1,10 +1,3 @@
// This #ifndef section makes clangd happy so that it can properly do type hints
// in this file
#ifndef MATRIX_H_
#define MATRIX_H_
#include "Matrix.hpp"
#endif
#ifdef MATRIX_H_ // since the .cpp file has to be included by the .hpp file this
// will evaluate to true
#include "Matrix.hpp"
@@ -12,44 +5,18 @@
#include <algorithm>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <type_traits>
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns>::Matrix(float value) {
this->Fill(value);
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns>::Matrix(const std::array<float, rows * columns> &array) {
this->setMatrixToArray(array);
}
template <uint8_t rows, uint8_t columns>
template <typename... Args>
Matrix<rows, columns>::Matrix(Args... args) {
constexpr uint16_t arraySize{static_cast<uint16_t>(rows) *
static_cast<uint16_t>(columns)};
std::initializer_list<float> initList{static_cast<float>(args)...};
// if there is only one value, we actually want to do a fill
if (sizeof...(args) == 1) {
this->Fill(*initList.begin());
}
static_assert(sizeof...(args) == arraySize || sizeof...(args) == 1,
"You did not provide the right amount of initializers for this "
"matrix size");
// choose whichever buffer size is smaller for the copy length
uint32_t minSize =
std::min(arraySize, static_cast<uint16_t>(initList.size()));
memcpy(this->matrix.begin(), initList.begin(), minSize * sizeof(float));
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> Matrix<rows, columns>::Identity() {
Matrix<rows, columns> identityMatrix{0};
uint32_t minDimension = std::min(rows, columns);
for (uint8_t idx{0}; idx < minDimension; idx++) {
identityMatrix[idx][idx] = 1;
}
return identityMatrix;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns>::Matrix(const Matrix<rows, columns> &other) {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
@@ -60,6 +27,19 @@ Matrix<rows, columns>::Matrix(const Matrix<rows, columns> &other) {
}
}
template <uint8_t rows, uint8_t columns>
template <typename... Args>
Matrix<rows, columns>::Matrix(Args... args) {
constexpr uint16_t arraySize{static_cast<uint16_t>(rows) *
static_cast<uint16_t>(columns)};
std::initializer_list<float> initList{static_cast<float>(args)...};
// choose whichever buffer size is smaller for the copy length
uint32_t minSize =
std::min(arraySize, static_cast<uint16_t>(initList.size()));
memcpy(this->matrix.begin(), initList.begin(), minSize * sizeof(float));
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::setMatrixToArray(
const std::array<float, rows * columns> &array) {
@@ -111,18 +91,21 @@ Matrix<rows, columns>::Mult(const Matrix<columns, other_columns> &other,
Matrix<rows, other_columns> &result) const {
// allocate some buffers for all of our dot products
Matrix<1, columns> this_row;
Matrix<columns, 1> other_column;
Matrix<rows, 1> other_column;
Matrix<1, rows> other_column_t;
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
// get our row
this->GetRow(row_idx, this_row);
for (uint8_t column_idx{0}; column_idx < other_columns; column_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
// get the other matrix'ss column
other.GetColumn(column_idx, other_column);
// transpose the other matrix's column
other_column.Transpose(other_column_t);
// the result's index is equal to the dot product of these two vectors
result[row_idx][column_idx] =
Matrix<rows, columns>::DotProduct(this_row, other_column.Transpose());
Matrix<rows, columns>::dotProduct(this_row, other_column_t);
}
}
@@ -142,13 +125,13 @@ Matrix<rows, columns>::Mult(float scalar, Matrix<rows, columns> &result) const {
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> Matrix<rows, columns>::Invert() const {
Matrix<rows, columns> &
Matrix<rows, columns>::Invert(Matrix<rows, columns> &result) const {
// since all matrix sizes have to be statically specified at compile time we
// can do this
static_assert(rows == columns,
"Your matrix isn't square and can't be inverted");
Matrix<rows, columns> result{};
// unfortunately we can't calculate this at compile time so we'll just reurn
// zeros
float determinant{this->Det()};
@@ -177,8 +160,8 @@ Matrix<rows, columns> Matrix<rows, columns>::Invert() const {
}
template <uint8_t rows, uint8_t columns>
Matrix<columns, rows> Matrix<rows, columns>::Transpose() const {
Matrix<columns, rows> result{};
Matrix<columns, rows> &
Matrix<rows, columns>::Transpose(Matrix<columns, rows> &result) const {
for (uint8_t column_idx{0}; column_idx < rows; column_idx++) {
for (uint8_t row_idx{0}; row_idx < columns; row_idx++) {
result[row_idx][column_idx] = this->Get(column_idx, row_idx);
@@ -190,10 +173,9 @@ Matrix<columns, rows> Matrix<rows, columns>::Transpose() const {
// explicitly define the determinant for a 2x2 matrix because it is definitely
// the fastest way to calculate a 2x2 matrix determinant
// template <>
// inline float Matrix<0, 0>::Det() const { return 1e+6; }
template <> inline float Matrix<1, 1>::Det() const { return this->matrix[0]; }
template <> inline float Matrix<2, 2>::Det() const {
template <> float Matrix<0, 0>::Det() const { return 1e+6; }
template <> float Matrix<1, 1>::Det() const { return this->matrix[0]; }
template <> float Matrix<2, 2>::Det() const {
return this->matrix[0] * this->matrix[3] - this->matrix[1] * this->matrix[2];
}
@@ -289,13 +271,8 @@ void Matrix<rows, columns>::ToString(std::string &stringBuffer) const {
}
template <uint8_t rows, uint8_t columns>
const float *Matrix<rows, columns>::ToArray() const {
return this->matrix.data();
}
template <uint8_t rows, uint8_t columns>
std::array<float, columns> &
Matrix<rows, columns>::operator[](uint8_t row_index) {
std::array<float, columns> &Matrix<rows, columns>::
operator[](uint8_t row_index) {
if (row_index > rows - 1) {
// TODO: We should throw something here instead of failing quietly.
row_index = 0;
@@ -307,36 +284,38 @@ Matrix<rows, columns>::operator[](uint8_t row_index) {
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> &
Matrix<rows, columns>::operator=(const Matrix<rows, columns> &other) {
memcpy(this->matrix.begin(), other.matrix.begin(),
rows * columns * sizeof(float));
Matrix<rows, columns> &Matrix<rows, columns>::
operator=(const Matrix<rows, columns> &other) {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
this->matrix[row_idx * columns + column_idx] =
other.Get(row_idx, column_idx);
}
}
// return a reference to ourselves so you can chain together these functions
return *this;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns>
Matrix<rows, columns>::operator+(const Matrix<rows, columns> &other) const {
Matrix<rows, columns> Matrix<rows, columns>::
operator+(const Matrix<rows, columns> &other) const {
Matrix<rows, columns> buffer{};
this->Add(other, buffer);
return buffer;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns>
Matrix<rows, columns>::operator-(const Matrix<rows, columns> &other) const {
Matrix<rows, columns> Matrix<rows, columns>::
operator-(const Matrix<rows, columns> &other) const {
Matrix<rows, columns> buffer{};
this->Sub(other, buffer);
return buffer;
}
template <uint8_t rows, uint8_t columns>
template <uint8_t other_columns>
Matrix<rows, other_columns> Matrix<rows, columns>::operator*(
const Matrix<columns, other_columns> &other) const {
Matrix<rows, other_columns> buffer{};
Matrix<rows, columns> Matrix<rows, columns>::
operator*(const Matrix<rows, columns> &other) const {
Matrix<rows, columns> buffer{};
this->Mult(other, buffer);
return buffer;
}
@@ -348,25 +327,9 @@ Matrix<rows, columns> Matrix<rows, columns>::operator*(float scalar) const {
return buffer;
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns> Matrix<rows, columns>::operator/(float scalar) const {
Matrix<rows, columns> buffer = *this;
if (scalar == 0) {
buffer.Fill(1e+10);
return buffer;
}
for (uint8_t row = 0; row < rows; row++) {
for (uint8_t column = 0; column < columns; column++) {
buffer[row][column] /= scalar;
}
}
return buffer;
}
template <uint8_t rows, uint8_t columns>
template <uint8_t vector_size>
float Matrix<rows, columns>::DotProduct(const Matrix<1, vector_size> &vec1,
float Matrix<rows, columns>::dotProduct(const Matrix<1, vector_size> &vec1,
const Matrix<1, vector_size> &vec2) {
float sum{0};
for (uint8_t i{0}; i < vector_size; i++) {
@@ -378,7 +341,7 @@ float Matrix<rows, columns>::DotProduct(const Matrix<1, vector_size> &vec1,
template <uint8_t rows, uint8_t columns>
template <uint8_t vector_size>
float Matrix<rows, columns>::DotProduct(const Matrix<vector_size, 1> &vec1,
float Matrix<rows, columns>::dotProduct(const Matrix<vector_size, 1> &vec1,
const Matrix<vector_size, 1> &vec2) {
float sum{0};
for (uint8_t i{0}; i < vector_size; i++) {
@@ -390,11 +353,7 @@ float Matrix<rows, columns>::DotProduct(const Matrix<vector_size, 1> &vec1,
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::Fill(float value) {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
this->matrix[row_idx * columns + column_idx] = value;
}
}
this->matrix.fill(value);
}
template <uint8_t rows, uint8_t columns>
@@ -450,8 +409,8 @@ Matrix<rows, columns>::adjugate(Matrix<rows, columns> &result) const {
}
template <uint8_t rows, uint8_t columns>
float Matrix<rows, columns>::EuclideanNorm() const {
Matrix<rows, columns> &
Matrix<rows, columns>::Normalize(Matrix<rows, columns> &result) const {
float sum{0};
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
@@ -460,146 +419,90 @@ float Matrix<rows, columns>::EuclideanNorm() const {
}
}
return sqrt(sum);
if (sum == 0) {
// this wouldn't do anything anyways
result.Fill(1e+6);
return result;
}
sum = sqrt(sum);
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
result[row_idx][column_idx] = this->Get(row_idx, column_idx) / sum;
}
}
return result;
}
template <uint8_t rows, uint8_t columns>
template <uint8_t sub_rows, uint8_t sub_columns, uint8_t row_offset,
uint8_t column_offset>
Matrix<sub_rows, sub_columns> Matrix<rows, columns>::SubMatrix() const {
// static assert that sub_rows + row_offset <= rows
// static assert that sub_columns + column_offset <= columns
static_assert(sub_rows + row_offset <= rows,
"The submatrix you're trying to get is out of bounds (rows)");
static_assert(
sub_columns + column_offset <= columns,
"The submatrix you're trying to get is out of bounds (columns)");
Matrix<sub_rows, sub_columns> buffer{};
for (uint8_t row_idx{0}; row_idx < sub_rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < sub_columns; column_idx++) {
buffer[row_idx][column_idx] =
this->Get(row_idx + row_offset, column_idx + column_offset);
Matrix<rows, rows> Matrix<rows, columns>::Eye() {
Matrix<rows, rows> i_matrix;
i_matrix.Fill(0);
for (uint8_t i{0}; i < rows; i++) {
i_matrix[i][i] = 1;
}
}
return buffer;
return i_matrix;
}
template <uint8_t rows, uint8_t columns>
template <uint8_t sub_rows, uint8_t sub_columns>
void Matrix<rows, columns>::SetSubMatrix(
uint8_t rowOffset, uint8_t columnOffset,
const Matrix<sub_rows, sub_columns> &sub_matrix) {
int16_t adjustedSubRows = sub_rows;
int16_t adjustedSubColumns = sub_columns;
int16_t adjustedRowOffset = rowOffset;
int16_t adjustedColumnOffset = columnOffset;
void Matrix<rows, columns>::QR_Decomposition(Matrix<rows, columns> &Q,
Matrix<rows, columns> &R) const {
Q = Matrix<rows, columns>::Eye(); // Q starts as the identity matrix
R = *this; // R starts as a copy of this matrix (For this algorithm we'll call
// this matrix A)
// a bunch of safety checks to make sure we don't overflow the matrix
if (sub_rows > rows) {
adjustedSubRows = rows;
}
if (sub_columns > columns) {
adjustedSubColumns = columns;
}
for (uint8_t row{0}; row < rows; row++) {
// compute the householder vector
const uint8_t houseHoldVectorSize{rows - row};
const uint8_t subMatrixSize{columns - row};
Matrix<houseHoldVectorSize, 1> x{};
this->SubMatrix(row, row, x);
if (adjustedSubRows + adjustedRowOffset >= rows) {
adjustedRowOffset =
std::max(0, static_cast<int16_t>(rows) - adjustedSubRows);
}
if (adjustedSubColumns + adjustedColumnOffset >= columns) {
adjustedColumnOffset =
std::max(0, static_cast<int16_t>(columns) - adjustedSubColumns);
}
for (uint8_t row_idx{0}; row_idx < adjustedSubRows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < adjustedSubColumns; column_idx++) {
this->matrix[(row_idx + adjustedRowOffset) * columns + column_idx +
adjustedColumnOffset] = sub_matrix.Get(row_idx, column_idx);
}
}
}
// QR decomposition: decomposes this matrix A into Q and R
// Assumes square matrix
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::QRDecomposition(Matrix<rows, columns> &Q,
Matrix<columns, columns> &R) const {
static_assert(columns <= rows, "QR decomposition requires columns <= rows");
Q.Fill(0);
R.Fill(0);
Matrix<rows, 1> a_col, e, u, Q_column_k{};
Matrix<1, rows> a_T, e_T{};
for (uint8_t column = 0; column < columns; column++) {
this->GetColumn(column, a_col);
u = a_col;
// -----------------------
// ----- CALCULATE Q -----
// -----------------------
for (uint8_t k = 0; k <= column; k++) {
Q.GetColumn(k, Q_column_k);
Matrix<1, rows> Q_column_k_T = Q_column_k.Transpose();
u = u - Q_column_k * (Q_column_k_T * a_col);
}
float norm = u.EuclideanNorm();
if (norm > 1e-4) {
u = u / norm;
Matrix<houseHoldVectorSize, 1> e1{};
e1.Fill(0);
if (x[0][0] >= 0) {
e1[0][0] = x.Norm();
} else {
u.Fill(0);
}
Q.SetSubMatrix(0, column, u);
// -----------------------
// ----- CALCULATE R -----
// -----------------------
for (uint8_t k = 0; k <= column; k++) {
Q.GetColumn(k, e);
R[k][column] = (a_col.Transpose() * e).Get(0, 0);
}
}
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::EigenQR(Matrix<rows, rows> &eigenVectors,
Matrix<rows, 1> &eigenValues,
uint32_t maxIterations,
float tolerance) const {
static_assert(rows > 1, "Matrix size must be > 1 for QR iteration");
static_assert(rows == columns, "Matrix size must be square for QR iteration");
Matrix<rows, rows> Ak = *this; // Copy original matrix
Matrix<rows, rows> QQ{Matrix<rows, rows>::Identity()};
for (uint32_t iter = 0; iter < maxIterations; ++iter) {
Matrix<rows, rows> Q, R, shift;
// QR shift lets us "attack" the first diagonal to speed up the algorithm
shift = Matrix<rows, rows>::Identity() * Ak[rows - 1][rows - 1];
(Ak - shift).QRDecomposition(Q, R);
Ak = R * Q + shift;
QQ = QQ * Q;
// Check convergence: off-diagonal norm
float offDiagSum = 0.0f;
for (uint32_t row = 1; row < rows; row++) {
for (uint32_t column = 0; column < row; column++) {
offDiagSum += fabs(Ak[row][column]);
}
e1[0][0] = -x.Norm();
}
if (offDiagSum < tolerance) {
break;
}
}
Matrix<houseHoldVectorSize, 1> v = x + e1;
v = v * (1 / v.Norm()); // normalize V
// Diagonal elements are the eigenvalues
for (uint8_t i = 0; i < rows; i++) {
eigenValues[i][0] = Ak[i][i];
// ************************************
// Apply the reflection to the R matrix
// ************************************
// initialize R's submatrix
Matrix<houseHoldVectorSize, subMatrixSize> R_subMatrix{};
R.SubMatrix(row, row, R_subMatrix);
// create some temporary buffers
Matrix<1, subMatrixSize> vR{};
Matrix<1, houseHoldVectorSize> v_T{};
v.Transpose(v_T);
Matrix<houseHoldVectorSize, subMatrixSize> vR_outer{};
// calculate the reflection
R_subMatrix =
R_subMatrix - 2 * Matrix<rows, columns>::OuterProduct(
v_T, v_T.Mult(R_subMatrix, vR), vR_outer);
// save the reflection back to R
R.CopySubMatrixInto(row, row, R_subMatrix);
// ************************************
// Apply the reflection to the Q matrix
// ************************************
// initialize Q's submatrix
Matrix<rows, houseHoldVectorSize> Q_subMatrix{};
Q.SubMatrix(0, row, Q_subMatrix);
// create some temporary buffers
Matrix<rows, 1> Qv{};
Matrix<rows, houseHoldVectorSize> Qv_outer{};
Q_subMatrix = Q_subMatrix - 2 * Matrix<rows, columns>::OuterProduct(
Q_subMatrix.Mult(v, Qv), v, Qv_outer);
Q.CopySubMatrixInto(0, row, Q_subMatrix);
}
eigenVectors = QQ;
}
#endif // MATRIX_H_

View File

@@ -1,8 +1,8 @@
#pragma once
#ifndef MATRIX_H_
#define MATRIX_H_
#include <array>
#include <cstdint>
#include <string>
// TODO: Add a function to calculate eigenvalues/vectors
// TODO: Add a function to compute RREF
@@ -11,13 +11,16 @@
template <uint8_t rows, uint8_t columns> class Matrix {
public:
static_assert(rows > 0, "Template error: rows must be greater than 0.");
static_assert(columns > 0, "Template error: columns must be greater than 0.");
/**
* @brief create a matrix but leave all of its values unitialized
*/
Matrix() = default;
/**
* @brief Create a matrix but fill all of its entries with one value
*/
Matrix(float value);
/**
* @brief Initialize a matrix with an array
*/
@@ -33,11 +36,6 @@ public:
*/
template <typename... Args> Matrix(Args... args);
/**
* @brief Create an identity matrix
*/
static Matrix<rows, columns> Identity();
/**
* @brief Set all elements in this to value
*/
@@ -114,20 +112,79 @@ public:
* @param result A buffer to store the result into
* @warning this is super slow! Only call it if you absolutely have to!!!
*/
Matrix<rows, columns> Invert() const;
Matrix<rows, columns> &Invert(Matrix<rows, columns> &result) const;
/**
* @brief Transpose this matrix
* @param result A buffer to store the result into
*/
Matrix<columns, rows> Transpose() const;
Matrix<columns, rows> &Transpose(Matrix<columns, rows> &result) const;
/**
* @brief Returns the euclidean magnitude of the matrix. Also known as the L2
* norm
* @brief reduce the matrix so the sum of its elements equal 1
* @param result a buffer to store the result into
*/
float EuclideanNorm() const;
Matrix<rows, columns> &Normalize(Matrix<rows, columns> &result) const;
/**
* @brief return an identity matrix of the specified size
*/
static Matrix<rows, rows> Eye();
/**
* @brief write a copy of a sub matrix into the given result matrix.
* @param rowIndex The row index to start the copy from
* @param columnIndex the column index to start the copy from
* @param result the matrix buffer to write the sub matrix into. The size of
* the matrix buffer allows the function to determine the end indices of the
* sub matrix
*/
template <uint8_t subRows, uint8_t subColumns>
Matrix<subRows, subColumns> &
SubMatrix(uint8_t rowIndex, uint8_t columnIndex,
Matrix<subRows, subColumns> &result) const {
return result;
}
/**
* @brief write a copy of a sub matrix into this matrix starting at the given
* idnex.
* @param rowIndex The row index to start the copy from
* @param columnIndex the column index to start the copy from
* @param subMatrix The submatrix to copy into this matrix. The size of
* the matrix buffer allows the function to determine the end indices of the
* sub matrix
*/
template <uint8_t subRows, uint8_t subColumns>
void CopySubMatrixInto(uint8_t rowIndex, uint8_t columnIndex,
const Matrix<subRows, subColumns> &subMatrix) {}
/**
* @brief Returns the norm of the matrix
*/
float Norm() { return 0; }
template <uint8_t vec1Length, uint8_t vec2Length>
static Matrix<vec1Length, vec2Length> &
OuterProduct(const Matrix<1, vec1Length> &vec1,
const Matrix<1, vec2Length> &vec2,
Matrix<vec1Length, vec2Length> &result) {
return result;
}
template <uint8_t vec1Length, uint8_t vec2Length>
static Matrix<vec1Length, vec2Length> &
OuterProduct(const Matrix<vec1Length, 1> &vec1,
const Matrix<vec2Length, 1> &vec2,
Matrix<vec1Length, vec2Length> &result) {
return result;
}
/**
* @brief Calulcate the QR decomposition of a matrix
* @param Q the
*/
void QR_Decomposition(Matrix<rows, columns> &Q,
Matrix<rows, columns> &R) const;
/**
* @brief Get a row from the matrix
@@ -154,16 +211,8 @@ public:
*/
constexpr uint8_t GetColumnSize() { return columns; }
/**
* @brief Write a string representation of the matrix into the buffer
*/
void ToString(std::string &stringBuffer) const;
/**
* @brief Returns the internal representation of the matrix as an array
*/
const float *ToArray() const;
/**
* @brief Get an element from the matrix
* @param row the row index of the element
@@ -172,6 +221,10 @@ public:
*/
float Get(uint8_t row_index, uint8_t column_index) const;
// *******************************************************
// ************** OPERATOR OVERRIDES *********************
// *******************************************************
/**
* @brief get the specified row of the matrix returned as a reference to the
* internal array
@@ -190,68 +243,29 @@ public:
Matrix<rows, columns> operator-(const Matrix<rows, columns> &other) const;
template <uint8_t other_columns>
Matrix<rows, other_columns>
operator*(const Matrix<columns, other_columns> &other) const;
Matrix<rows, columns> operator*(const Matrix<rows, columns> &other) const;
Matrix<rows, columns> operator*(float scalar) const;
Matrix<rows, columns> operator/(float scalar) const;
template <uint8_t sub_rows, uint8_t sub_columns, uint8_t row_offset,
uint8_t column_offset>
Matrix<sub_rows, sub_columns> SubMatrix() const;
template <uint8_t sub_rows, uint8_t sub_columns>
void SetSubMatrix(uint8_t rowOffset, uint8_t columnOffset,
const Matrix<sub_rows, sub_columns> &sub_matrix);
private:
/**
* @brief take the dot product of the two vectors
*/
template <uint8_t vector_size>
static float DotProduct(const Matrix<1, vector_size> &vec1,
static float dotProduct(const Matrix<1, vector_size> &vec1,
const Matrix<1, vector_size> &vec2);
template <uint8_t vector_size>
static float DotProduct(const Matrix<vector_size, 1> &vec1,
static float dotProduct(const Matrix<vector_size, 1> &vec1,
const Matrix<vector_size, 1> &vec2);
static float DotProduct(const Matrix<1, 1> &vec1, const Matrix<1, 1> &vec2) {
return vec1.Get(0, 0) * vec2.Get(0, 0);
}
/**
* @brief Performs QR decomposition on this matrix
* @param Q a buffer that will contain Q after the function completes
* @param R a buffer that will contain R after the function completes
*/
void QRDecomposition(Matrix<rows, columns> &Q,
Matrix<columns, columns> &R) const;
/**
* @brief Uses QR decomposition to efficiently calculate the eigenvectors
* and values of this matrix
* @param eigenVectors a buffer that will contain the eigenvectors fo this
* matrix
* @param eigenValues a buffer that will contain the eigenValues fo this
* matrix
* @param maxIterations the number of iterations to perform before giving
* up on reaching the given tolerance
* @param tolerance the level of accuracy to obtain before stopping.
*/
void EigenQR(Matrix<rows, rows> &eigenVectors, Matrix<rows, 1> &eigenValues,
uint32_t maxIterations = 1000, float tolerance = 1e-6f) const;
protected:
std::array<float, rows * columns> matrix;
private:
Matrix<rows, columns> &adjugate(Matrix<rows, columns> &result) const;
void setMatrixToArray(const std::array<float, rows * columns> &array);
std::array<float, rows * columns> matrix;
};
#ifndef MATRIX_H_
#include "Matrix.cpp"
#endif // MATRIX_H_

View File

@@ -1,9 +1 @@
# Introduction
This matrix math library is focused on embedded development and avoids any heap memory allocation unless you explicitly ask for it.
It uses templates to pre-allocate matrices on the stack.
There are still several operations that are works in progress such as:
- Add a function to calculate eigenvalues/vectors
- Add a function to compute RREF
- Add a function for SVD decomposition
- Add a function for LQ decomposition
A Simple matrix math library focused on embedded development which avoids and heap memory allocation unless you explicitly ask for it.

81
Vector3D.hpp Normal file
View File

@@ -0,0 +1,81 @@
#pragma once
#include <cstdint>
#include <cmath>
#include <type_traits>
template <typename Type>
class V3D{
public:
constexpr V3D(const V3D& other):
x(other.x),
y(other.y),
z(other.z){
static_assert(std::is_arithmetic<Type>::value, "Type must be a number");
}
constexpr V3D(Type x=0, Type y=0, Type z=0):
x(x),
y(y),
z(z){
static_assert(std::is_arithmetic<Type>::value, "Type must be a number");
}
template <typename OtherType>
constexpr V3D(const V3D<OtherType> other):
x(static_cast<Type>(other.x)),
y(static_cast<Type>(other.y)),
z(static_cast<Type>(other.z)){
static_assert(std::is_arithmetic<Type>::value, "Type must be a number");
static_assert(std::is_arithmetic<OtherType>::value, "OtherType must be a number");
}
V3D& operator=(const V3D &other){
this->x = other.x;
this->y = other.y;
this->z = other.z;
return *this;
}
V3D& operator+=(const V3D &other){
this->x += other.x;
this->y += other.y;
this->z += other.z;
return *this;
}
V3D& operator-=(const V3D &other){
this->x -= other.x;
this->y -= other.y;
this->z -= other.z;
return *this;
}
V3D& operator/=(const Type scalar){
if(scalar == 0){
return *this;
}
this->x /= scalar;
this->y /= scalar;
this->z /= scalar;
return *this;
}
V3D& operator*=(const Type scalar){
this->x *= scalar;
this->y *= scalar;
this->z *= scalar;
return *this;
}
bool operator==(const V3D &other){
return this->x == other.x && this->y == other.y && this->z == other.z;
}
float magnitude(){
return std::sqrt(static_cast<float>(this->x * this->x + this->y * this->y + this->z * this->z));
}
Type x;
Type y;
Type z;
};

View File

@@ -1,20 +0,0 @@
{
"name": "Vector3D",
"version": "1.0.0",
"description": "Contains a V3D object for easy 3d vector math and a Matrix object for more complicated linear algebra operations.",
"keywords": "linear algebra, vector, matrix, 3D",
"repository": {
"type": "git",
"url": "https://github.com/Cynopolis/Vector3D.git"
},
"authors": [
{
"name": "Cynopolis",
"email": "megaveganzombie@gmail.com",
"url": "https://github.com/Cynopolis"
}
],
"license": "None Yet",
"frameworks": "*",
"platforms": "*"
}

159
qr-decom.py Normal file
View File

@@ -0,0 +1,159 @@
import numpy as np
# QR decomposition using the householder reflection method
def householder_reflection(A):
"""
Perform QR decomposition using Householder reflection.
Arguments:
A -- A matrix to be decomposed (m x n).
Returns:
Q -- Orthogonal matrix (m x m).
R -- Upper triangular matrix (m x n).
"""
A = A.astype(float) # Ensure the matrix is of type float
m, n = A.shape
Q = np.eye(m) # Initialize Q as an identity matrix
R = A.copy() # R starts as a copy of A
# Apply Householder reflections for each column
for k in range(n):
# Step 1: Compute the Householder vector
x = R[k:m, k]
e1 = np.zeros_like(x)
e1[0] = np.linalg.norm(x) if x[0] >= 0 else -np.linalg.norm(x)
v = x + e1
v = v / np.linalg.norm(v) # Normalize v
# Step 2: Apply the reflection to the matrix
R[k:m, k:n] = R[k:m, k:n] - 2 * np.outer(v, v.T @ R[k:m, k:n])
# Step 3: Apply the reflection to Q
Q[:, k:m] = Q[:, k:m] - 2 * np.outer(Q[:, k:m] @ v, v)
# The resulting Q and R are the QR decomposition
return Q, R
# Example usage
A = np.array([[12, -51, 4],
[6, 167, -68],
[-4, 24, -41]])
Q, R = householder_reflection(A)
print("Q matrix:")
print(Q)
print("\nR matrix:")
print(R)
print("Multiplied Together:")
print(Q@R)
def svd_decomposition(A):
"""
Perform Singular Value Decomposition (SVD) from scratch.
Arguments:
A -- The matrix to be decomposed (m x n).
Returns:
U -- Orthogonal matrix of left singular vectors (m x m).
Sigma -- Diagonal matrix of singular values (m x n).
Vt -- Orthogonal matrix of right singular vectors (n x n).
"""
# Step 1: Compute A^T A
AtA = np.dot(A.T, A) # A transpose multiplied by A
# Step 2: Compute the eigenvalues and eigenvectors of A^T A
eigenvalues, V = np.linalg.eig(AtA)
# Step 3: Sort eigenvalues in descending order and sort V accordingly
sorted_indices = np.argsort(eigenvalues)[::-1] # Indices to sort eigenvalues in descending order
eigenvalues = eigenvalues[sorted_indices]
V = V[:, sorted_indices]
# Step 4: Compute the singular values (sqrt of eigenvalues)
singular_values = np.sqrt(eigenvalues)
# Step 5: Construct the Sigma matrix
m, n = A.shape
Sigma = np.zeros((m, n)) # Initialize Sigma as a zero matrix
for i in range(min(m, n)):
Sigma[i, i] = singular_values[i] # Place the singular values on the diagonal
# Step 6: Compute the U matrix using A * V = U * Sigma
U = np.dot(A, V) # A * V gives us the unnormalized U
# Normalize the columns of U
for i in range(U.shape[1]):
U[:, i] = U[:, i] / singular_values[i] # Normalize each column by the corresponding singular value
# Step 7: Return U, Sigma, Vt
return U, Sigma, V.T # V.T is the transpose of V
# Example usage
A = np.array([[12, -51, 4],
[6, 167, -68],
[-4, 24, -41]])
U, Sigma, Vt = svd_decomposition(A)
print("\nSVD DECOMPOSITION\nU matrix:")
print(U)
print("\nSigma matrix:")
print(Sigma)
print("\nVt matrix:")
print(Vt)
print("Multiplied together:")
print(U@Sigma@Vt)
def eigen_decomposition_qr(A, max_iter=1000, tol=1e-9):
"""
Compute the eigenvalues and eigenvectors of a matrix A using the QR algorithm
with QR decomposition.
Arguments:
A -- A square matrix (n x n).
max_iter -- Maximum number of iterations for convergence (default 1000).
tol -- Tolerance for convergence (default 1e-9).
Returns:
eigenvalues -- List of eigenvalues.
eigenvectors -- Matrix of eigenvectors.
"""
# Make a copy of A to perform the iteration
A_copy = A.copy()
n = A_copy.shape[0]
# Initialize the matrix for eigenvectors (this will accumulate the Q matrices)
eigenvectors = np.eye(n)
# Perform QR iterations
for _ in range(max_iter):
# Perform QR decomposition on A_copy
Q, R = householder_reflection(A_copy)
# Update A_copy to be R * Q (QR algorithm step)
A_copy = R @ Q
# Accumulate the eigenvectors
eigenvectors = eigenvectors @ Q
# Check for convergence: if the off-diagonal elements are small enough, we stop
off_diagonal_norm = np.linalg.norm(np.tril(A_copy, -1)) # Norm of the lower triangle (off-diagonal)
if off_diagonal_norm < tol:
break
# The eigenvalues are the diagonal elements of the matrix A_copy
eigenvalues = np.diag(A_copy)
return eigenvalues, eigenvectors
# Example usage
A = np.array([[12, -51, 4],
[6, 167, -68],
[-4, 24, -41]])
eigenvalues, eigenvectors = eigen_decomposition_qr(A)
print("\n\nEigenvalues:", eigenvalues)
print("Eigenvectors:\n", eigenvectors)

View File

@@ -1,59 +0,0 @@
# Quaternion Interface
add_library(vector-3d-intf
INTERFACE
)
target_include_directories(vector-3d-intf
INTERFACE
.
)
target_link_libraries(vector-3d-intf
INTERFACE
)
# Quaternion
add_library(quaternion
STATIC
Quaternion.cpp
)
target_link_libraries(quaternion
PUBLIC
vector-3d-intf
PRIVATE
)
set_target_properties(quaternion
PROPERTIES
LINKER_LANGUAGE CXX
)
# Vector3d
add_library(vector-3d
STATIC
Vector3D.cpp
)
target_link_libraries(vector-3d
PUBLIC
vector-3d-intf
PRIVATE
)
# Matrix
add_library(matrix
STATIC
Matrix.cpp
)
target_link_libraries(matrix
PUBLIC
vector-3d-intf
PRIVATE
)
set_target_properties(matrix
PROPERTIES
LINKER_LANGUAGE CXX
)

View File

@@ -1,120 +0,0 @@
#include "Quaternion.h"
#include <cmath>
/**
* @brief Create a quaternion from an angle and axis
* @param angle The angle to rotate by
* @param axis The axis to rotate around
*/
Quaternion Quaternion::FromAngleAndAxis(float angle, const Matrix<1, 3> &axis) {
const float halfAngle = angle / 2;
const float sinHalfAngle = sin(halfAngle);
Matrix<1, 3> normalizedAxis = axis / axis.EuclideanNorm();
return Quaternion{static_cast<float>(cos(halfAngle)),
normalizedAxis.Get(0, 0) * sinHalfAngle,
normalizedAxis.Get(0, 1) * sinHalfAngle,
normalizedAxis.Get(0, 2) * sinHalfAngle};
}
float Quaternion::operator[](uint8_t index) const {
if (index < 4) {
return this->matrix[index];
}
// index out of bounds
return 1e+6;
}
void Quaternion::operator=(const Quaternion &other) {
memcpy(&(this->matrix), &(other.matrix), 4 * sizeof(float));
}
Quaternion Quaternion::operator*(const Quaternion &other) const {
Quaternion result{};
this->Q_Mult(other, result);
return result;
}
Quaternion Quaternion::operator*(float scalar) const {
return Quaternion{this->w * scalar, this->v1 * scalar, this->v2 * scalar,
this->v3 * scalar};
}
Quaternion Quaternion::operator+(const Quaternion &other) const {
return Quaternion{this->w + other.w, this->v1 + other.v1, this->v2 + other.v2,
this->v3 + other.v3};
}
Quaternion &Quaternion::Q_Mult(const Quaternion &other,
Quaternion &buffer) const {
// eq. 6
buffer.w = (other.w * this->w - other.v1 * this->v1 - other.v2 * this->v2 -
other.v3 * this->v3);
buffer.v1 = (other.w * this->v1 + other.v1 * this->w - other.v2 * this->v3 +
other.v3 * this->v2);
buffer.v2 = (other.w * this->v2 + other.v1 * this->v3 + other.v2 * this->w -
other.v3 * this->v1);
buffer.v3 = (other.w * this->v3 - other.v1 * this->v2 + other.v2 * this->v1 +
other.v3 * this->w);
return buffer;
}
Quaternion &Quaternion::Rotate(Quaternion &other, Quaternion &buffer) const {
Quaternion prime{this->w, -this->v1, -this->v2, -this->v3};
buffer.v1 = other.v1;
buffer.v2 = other.v2;
buffer.v3 = other.v3;
buffer.w = 0;
Quaternion temp{};
this->Q_Mult(buffer, temp);
temp.Q_Mult(prime, buffer);
return buffer;
}
void Quaternion::Normalize() {
float magnitude = sqrt(this->v1 * this->v1 + this->v2 * this->v2 +
this->v3 * this->v3 + this->w * this->w);
if (magnitude == 0) {
return;
}
this->v1 /= magnitude;
this->v2 /= magnitude;
this->v3 /= magnitude;
this->w /= magnitude;
}
Matrix<3, 3> Quaternion::ToRotationMatrix() const {
float xx = this->v1 * this->v1;
float yy = this->v2 * this->v2;
float zz = this->v3 * this->v3;
Matrix<3, 3> rotationMatrix{1 - 2 * (yy - zz),
2 * (this->v1 * this->v2 - this->v3 * this->w),
2 * (this->v1 * this->v3 + this->v2 * this->w),
2 * (this->v1 * this->v2 + this->v3 * this->w),
1 - 2 * (xx - zz),
2 * (this->v2 * this->v3 - this->v1 * this->w),
2 * (this->v1 * this->v3 - this->v2 * this->w),
2 * (this->v2 * this->v3 + this->v1 * this->w),
1 - 2 * (xx - yy)};
return rotationMatrix;
};
Matrix<3, 1> Quaternion::ToEulerAngle() const {
float sqv1 = this->v1 * this->v1;
float sqv2 = this->v2 * this->v2;
float sqv3 = this->v3 * this->v3;
float sqw = this->w * this->w;
Matrix<3, 1> eulerAngle;
{
atan2(2.0 * (this->v1 * this->v2 + this->v3 * this->w),
(sqv1 - sqv2 - sqv3 + sqw));
asin(-2.0 * (this->v1 * this->v3 - this->v2 * this->w) /
(sqv1 + sqv2 + sqv3 + sqw));
atan2(2.0 * (this->v2 * this->v3 + this->v1 * this->w),
(-sqv1 - sqv2 + sqv3 + sqw));
};
return eulerAngle;
}

View File

@@ -1,90 +0,0 @@
#ifndef QUATERNION_H_
#define QUATERNION_H_
#include "Matrix.hpp"
class Quaternion : public Matrix<1, 4> {
public:
Quaternion() : Matrix<1, 4>() {}
Quaternion(float w, float v1, float v2, float v3)
: Matrix<1, 4>(w, v1, v2, v3) {}
Quaternion(const Quaternion &q) : Matrix<1, 4>(q.w, q.v1, q.v2, q.v3) {}
Quaternion(const Matrix<1, 4> &matrix) : Matrix<1, 4>(matrix) {}
Quaternion(const std::array<float, 4> &array) : Matrix<1, 4>(array) {}
/**
* @brief Create a quaternion from an angle and axis
* @param angle The angle to rotate by
* @param axis The axis to rotate around
*/
static Quaternion FromAngleAndAxis(float angle, const Matrix<1, 3> &axis);
/**
* @brief Access the elements of the quaternion
* @param index The index of the element to access
* @return The value of the element at the index
*/
float operator[](uint8_t index) const;
/**
* @brief Assign one quaternion to another
*/
void operator=(const Quaternion &other);
/**
* @brief Do quaternion multiplication
*/
Quaternion operator*(const Quaternion &other) const;
/**
* @brief Multiply the quaternion by a scalar
*/
Quaternion operator*(float scalar) const;
/**
* @brief Add two quaternions together
* @param other The quaternion to add to this one
* @return The net quaternion
*/
Quaternion operator+(const Quaternion &other) const;
/**
* @brief Q_Mult a quaternion by another quaternion
* @param other The quaternion to rotate by
* @param buffer The buffer to store the result in
* @return A reference to the buffer
*/
Quaternion &Q_Mult(const Quaternion &other, Quaternion &buffer) const;
/**
* @brief Rotate a quaternion by this quaternion
* @param other The quaternion to rotate
* @param buffer The buffer to store the result in
*
*/
Quaternion &Rotate(Quaternion &other, Quaternion &buffer) const;
/**
* @brief Normalize the quaternion to a magnitude of 1
*/
void Normalize();
/**
* @brief Convert the quaternion to a rotation matrix
* @return The rotation matrix
*/
Matrix<3, 3> ToRotationMatrix() const;
/**
* @brief Convert the quaternion to an Euler angle representation
* @return The Euler angle representation of the quaternion
*/
Matrix<3, 1> ToEulerAngle() const;
// Give people an easy way to access the elements
float &w{matrix[0]};
float &v1{matrix[1]};
float &v2{matrix[2]};
float &v3{matrix[3]};
};
#endif // QUATERNION_H_

View File

@@ -1,162 +0,0 @@
#ifdef VECTOR3D_H_ // since the .cpp file has to be included by the .hpp file this
// will evaluate to true
#include <cmath>
#include <type_traits>
#include <string>
template <typename Type>
V3D<Type>::V3D(const Matrix<1, 3> &other)
{
this->x = other.Get(0, 0);
this->y = other.Get(0, 1);
this->z = other.Get(0, 2);
}
template <typename Type>
V3D<Type>::V3D(const Matrix<3, 1> &other)
{
this->x = other.Get(0, 0);
this->y = other.Get(1, 0);
this->z = other.Get(2, 0);
}
template <typename Type>
V3D<Type>::V3D(const V3D &other) : x(other.x),
y(other.y),
z(other.z)
{
static_assert(std::is_arithmetic<Type>::value, "Type must be a number");
}
template <typename Type>
V3D<Type>::V3D(Type x, Type y, Type z) : x(x),
y(y),
z(z)
{
static_assert(std::is_arithmetic<Type>::value, "Type must be a number");
}
template <typename Type>
template <typename OtherType>
V3D<Type>::V3D(const V3D<OtherType> &other)
{
static_assert(std::is_arithmetic<Type>::value, "Type must be a number");
static_assert(std::is_arithmetic<OtherType>::value, "OtherType must be a number");
this->x = static_cast<Type>(other.x);
this->y = static_cast<Type>(other.y);
this->z = static_cast<Type>(other.z);
}
template <typename Type>
std::array<Type, 3> V3D<Type>::ToArray() const
{
return {this->x, this->y, this->z};
}
template <typename Type>
void V3D<Type>::operator=(const V3D<Type> &other)
{
this->x = other.x;
this->y = other.y;
this->z = other.z;
}
template <typename Type>
V3D<Type> V3D<Type>::operator+(Type other) const
{
return V3D<Type>{this->x + other, this->y + other, this->z + other};
}
template <typename Type>
V3D<Type> V3D<Type>::operator+(const V3D<Type> &other) const
{
return V3D<Type>{this->x + other.x, this->y + other.y, this->z + other.z};
}
template <typename Type>
V3D<Type> V3D<Type>::operator-(Type other) const
{
return V3D<Type>{this->x - other, this->y - other, this->z - other};
}
template <typename Type>
V3D<Type> V3D<Type>::operator-(const V3D<Type> &other) const
{
return V3D<Type>{this->x - other.x, this->y - other.y, this->z - other.z};
}
template <typename Type>
V3D<Type> V3D<Type>::operator*(Type scalar) const
{
return V3D<Type>{this->x * scalar, this->y * scalar, this->z * scalar};
}
template <typename Type>
V3D<Type> V3D<Type>::operator/(Type scalar) const
{
return V3D<Type>{this->x / scalar, this->y / scalar, this->z / scalar};
}
template <typename Type>
V3D<Type> &V3D<Type>::operator+=(Type other)
{
*this = *this + other;
return *this;
}
template <typename Type>
V3D<Type> &V3D<Type>::operator+=(const V3D<Type> &other)
{
*this = *this + other;
return *this;
}
template <typename Type>
V3D<Type> &V3D<Type>::operator-=(Type other)
{
*this = *this - other;
return *this;
}
template <typename Type>
V3D<Type> &V3D<Type>::operator-=(const V3D<Type> &other)
{
*this = *this - other;
return *this;
}
template <typename Type>
V3D<Type> &V3D<Type>::operator/=(Type scalar)
{
if (scalar == 0)
{
return *this;
}
this->x /= scalar;
this->y /= scalar;
this->z /= scalar;
return *this;
}
template <typename Type>
V3D<Type> &V3D<Type>::operator*=(Type scalar)
{
this->x *= scalar;
this->y *= scalar;
this->z *= scalar;
return *this;
}
template <typename Type>
bool V3D<Type>::operator==(const V3D<Type> &other)
{
return this->x == other.x && this->y == other.y && this->z == other.z;
}
template <typename Type>
float V3D<Type>::magnitude()
{
return std::sqrt(static_cast<float>(this->x * this->x + this->y * this->y + this->z * this->z));
}
#endif // VECTOR3D_H_

View File

@@ -1,58 +0,0 @@
#ifndef VECTOR3D_H_
#define VECTOR3D_H_
#include <cstdint>
#include "Matrix.hpp"
template <typename Type>
class V3D
{
public:
V3D(const Matrix<1, 3> &other);
V3D(const Matrix<3, 1> &other);
V3D(const V3D &other);
V3D(Type x = 0, Type y = 0, Type z = 0);
template <typename OtherType>
V3D(const V3D<OtherType> &other);
template <typename OtherType>
operator OtherType() const;
std::array<Type, 3> ToArray() const;
V3D<Type> operator+(Type other) const;
V3D<Type> operator+(const V3D<Type> &other) const;
V3D<Type> operator-(Type other) const;
V3D<Type> operator-(const V3D<Type> &other) const;
V3D<Type> operator*(Type scalar) const;
V3D<Type> operator/(Type scalar) const;
void operator=(const V3D<Type> &other);
V3D<Type> &operator+=(Type other);
V3D<Type> &operator+=(const V3D<Type> &other);
V3D<Type> &operator-=(Type other);
V3D<Type> &operator-=(const V3D<Type> &other);
V3D<Type> &operator/=(Type scalar);
V3D<Type> &operator*=(Type scalar);
bool operator==(const V3D<Type> &other);
float magnitude();
Type x;
Type y;
Type z;
};
#include "Vector3D.cpp"
#endif // VECTOR3D_H_

View File

@@ -1,35 +1,21 @@
# Quaternion tests
add_executable(quaternion-tests quaternion-tests.cpp)
cmake_minimum_required (VERSION 3.11)
target_link_libraries(quaternion-tests
PRIVATE
quaternion
Catch2::Catch2WithMain
project ("test_driver")
include(FetchContent)
FetchContent_Declare(
Catch2
GIT_REPOSITORY https://github.com/catchorg/Catch2.git
GIT_TAG v3.0.1 # or a later release
)
# matrix tests
FetchContent_MakeAvailable(Catch2)
add_executable(matrix-tests matrix-tests.cpp)
target_link_libraries(matrix-tests
PRIVATE
matrix
Catch2::Catch2WithMain
)
# matrix timing tests
add_executable(matrix-timing-tests matrix-timing-tests.cpp)
target_link_libraries(matrix-timing-tests
PRIVATE
matrix
Catch2::Catch2WithMain
)
# Vector 3D Tests
add_executable(vector-3d-tests vector-tests.cpp)
target_link_libraries(vector-3d-tests
PRIVATE
vector-3d
Matrix
Catch2::Catch2WithMain
)

View File

@@ -0,0 +1,14 @@
Addition: 0.419 s
Subtraction: 0.421 s
Multiplication: 3.297 s
Scalar Multiplication: 0.329 s
Element Multiply: 0.306 s
Element Divide: 0.302 s
Minor Matrix: 0.331 s
Determinant: 0.177 s
Matrix of Minors: 0.766 s
Invert: 0.183 s
Transpose: 0.215 s
Normalize: 0.315 s
GET ROW: 0.008 s
GET COLUMN: 0.43 s

View File

@@ -10,61 +10,41 @@
#include <cmath>
#include <iostream>
// Helper functions
template <uint8_t rows, uint8_t columns>
float matrixSum(const Matrix<rows, columns> &matrix) {
float sum = 0;
for (uint32_t i = 0; i < rows * columns; i++) {
float number = matrix.ToArray()[i];
sum += number * number;
}
return std::sqrt(sum);
}
template <uint8_t rows, uint8_t columns>
void printLabeledMatrix(const std::string &label,
const Matrix<rows, columns> &matrix) {
std::string strBuf = "";
matrix.ToString(strBuf);
std::cout << label << ":\n" << strBuf << std::endl;
}
TEST_CASE("Initialization", "Matrix") {
SECTION("Array Initialization") {
std::array<float, 4> arr2{5, 6, 7, 8};
Matrix<2, 2> mat2{arr2};
// array initialization
REQUIRE(mat2.Get(0, 0) == 5);
REQUIRE(mat2.Get(0, 1) == 6);
REQUIRE(mat2.Get(1, 0) == 7);
REQUIRE(mat2.Get(1, 1) == 8);
}
SECTION("Argument Pack Initialization") {
Matrix<2, 2> mat1{1, 2, 3, 4};
// template pack initialization
REQUIRE(mat1.Get(0, 0) == 1);
REQUIRE(mat1.Get(0, 1) == 2);
REQUIRE(mat1.Get(1, 0) == 3);
REQUIRE(mat1.Get(1, 1) == 4);
}
SECTION("Single Argument Pack Initialization") {
Matrix<2, 2> mat1{2};
// template pack initialization
REQUIRE(mat1.Get(0, 0) == 2);
REQUIRE(mat1.Get(0, 1) == 2);
REQUIRE(mat1.Get(1, 0) == 2);
REQUIRE(mat1.Get(1, 1) == 2);
}
}
TEST_CASE("Elementary Matrix Operations", "Matrix") {
std::array<float, 4> arr2{5, 6, 7, 8};
Matrix<2, 2> mat1{1, 2, 3, 4};
Matrix<2, 2> mat2{arr2};
Matrix<2, 2> mat3{};
SECTION("Initialization") {
// array initialization
REQUIRE(mat1.Get(0, 0) == 1);
REQUIRE(mat1.Get(0, 1) == 2);
REQUIRE(mat1.Get(1, 0) == 3);
REQUIRE(mat1.Get(1, 1) == 4);
// empty initialization
REQUIRE(mat3.Get(0, 0) == 0);
REQUIRE(mat3.Get(0, 1) == 0);
REQUIRE(mat3.Get(1, 0) == 0);
REQUIRE(mat3.Get(1, 1) == 0);
// template pack initialization
REQUIRE(mat2.Get(0, 0) == 5);
REQUIRE(mat2.Get(0, 1) == 6);
REQUIRE(mat2.Get(1, 0) == 7);
REQUIRE(mat2.Get(1, 1) == 8);
// large matrix
Matrix<255, 255> mat6{};
mat6.Fill(4);
for (uint8_t row{0}; row < 255; row++) {
for (uint8_t column{0}; column < 255; column++) {
REQUIRE(mat6.Get(row, column) == 4);
}
}
}
SECTION("Fill") {
mat1.Fill(0);
REQUIRE(mat1.Get(0, 0) == 0);
@@ -86,6 +66,10 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
}
SECTION("Addition") {
std::string strBuf1 = "";
mat1.ToString(strBuf1);
std::cout << "Matrix 1:\n" << strBuf1 << std::endl;
mat1.Add(mat2, mat3);
REQUIRE(mat3.Get(0, 0) == 6);
@@ -134,36 +118,6 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
REQUIRE(mat3.Get(0, 1) == 22);
REQUIRE(mat3.Get(1, 0) == 43);
REQUIRE(mat3.Get(1, 1) == 50);
// Non-square multiplication
Matrix<2, 4> mat4{1, 2, 3, 4, 5, 6, 7, 8};
Matrix<4, 2> mat5{9, 10, 11, 12, 13, 14, 15, 16};
Matrix<2, 2> mat6{};
mat6 = mat4 * mat5;
REQUIRE(mat6.Get(0, 0) == 130);
REQUIRE(mat6.Get(0, 1) == 140);
REQUIRE(mat6.Get(1, 0) == 322);
REQUIRE(mat6.Get(1, 1) == 348);
// One more non-square multiplicaiton
Matrix<4, 4> mat7{};
mat7 = mat5 * mat4;
REQUIRE(mat7.Get(0, 0) == 59);
REQUIRE(mat7.Get(0, 1) == 78);
REQUIRE(mat7.Get(0, 2) == 97);
REQUIRE(mat7.Get(0, 3) == 116);
REQUIRE(mat7.Get(1, 0) == 71);
REQUIRE(mat7.Get(1, 1) == 94);
REQUIRE(mat7.Get(1, 2) == 117);
REQUIRE(mat7.Get(1, 3) == 140);
REQUIRE(mat7.Get(2, 0) == 83);
REQUIRE(mat7.Get(2, 1) == 110);
REQUIRE(mat7.Get(2, 2) == 137);
REQUIRE(mat7.Get(2, 3) == 164);
REQUIRE(mat7.Get(3, 0) == 95);
REQUIRE(mat7.Get(3, 1) == 126);
REQUIRE(mat7.Get(3, 2) == 157);
REQUIRE(mat7.Get(3, 3) == 188);
}
SECTION("Scalar Multiplication") {
@@ -228,6 +182,18 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
REQUIRE(minorMat4.Get(1, 0) == 4);
REQUIRE(minorMat4.Get(1, 1) == 5);
}
SECTION("Identity Matrix") {
Matrix<3, 3> mat4{Matrix<3, 3>::Eye()};
REQUIRE(mat4.Get(0, 0) == 1);
REQUIRE(mat4.Get(0, 1) == 0);
REQUIRE(mat4.Get(0, 2) == 0);
REQUIRE(mat4.Get(1, 0) == 0);
REQUIRE(mat4.Get(1, 1) == 1);
REQUIRE(mat4.Get(1, 2) == 0);
REQUIRE(mat4.Get(2, 0) == 0);
REQUIRE(mat4.Get(2, 1) == 0);
REQUIRE(mat4.Get(2, 2) == 1);
}
SECTION("Determinant") {
float det1 = mat1.Det();
@@ -268,7 +234,7 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
}
SECTION("Invert") {
mat3 = mat1.Invert();
mat1.Invert(mat3);
REQUIRE_THAT(mat3.Get(0, 0), Catch::Matchers::WithinRel(-2.0F, 1e-6f));
REQUIRE_THAT(mat3.Get(0, 1), Catch::Matchers::WithinRel(1.0F, 1e-6f));
REQUIRE_THAT(mat3.Get(1, 0), Catch::Matchers::WithinRel(1.5F, 1e-6f));
@@ -277,7 +243,7 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
SECTION("Transpose") {
// transpose a square matrix
mat3 = mat1.Transpose();
mat1.Transpose(mat3);
REQUIRE(mat3.Get(0, 0) == 1);
REQUIRE(mat3.Get(0, 1) == 3);
@@ -288,7 +254,7 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
Matrix<2, 3> mat4{1, 2, 3, 4, 5, 6};
Matrix<3, 2> mat5{};
mat5 = mat4.Transpose();
mat4.Transpose(mat5);
REQUIRE(mat5.Get(0, 0) == 1);
REQUIRE(mat5.Get(0, 1) == 4);
@@ -298,6 +264,26 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
REQUIRE(mat5.Get(2, 1) == 6);
}
SECTION("Normalize") {
mat1.Normalize(mat3);
float sqrt_30{sqrt(30)};
REQUIRE(mat3.Get(0, 0) == 1 / sqrt_30);
REQUIRE(mat3.Get(0, 1) == 2 / sqrt_30);
REQUIRE(mat3.Get(1, 0) == 3 / sqrt_30);
REQUIRE(mat3.Get(1, 1) == 4 / sqrt_30);
Matrix<2, 1> mat4{-0.878877044, 2.92092276};
Matrix<2, 1> mat5{};
mat4.Normalize(mat5);
REQUIRE_THAT(mat5.Get(0, 0),
Catch::Matchers::WithinRel(-0.288129855179f, 1e-6f));
REQUIRE_THAT(mat5.Get(1, 0),
Catch::Matchers::WithinRel(0.957591346325f, 1e-6f));
}
SECTION("GET ROW") {
Matrix<1, 2> mat1Rows{};
mat1.GetRow(0, mat1Rows);
@@ -319,345 +305,113 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
REQUIRE(mat1Columns.Get(0, 0) == 2);
REQUIRE(mat1Columns.Get(1, 0) == 4);
}
SECTION("Get Sub-Matrices") {
Matrix<3, 3> mat4{1, 2, 3, 4, 5, 6, 7, 8, 9};
Matrix<2, 2> mat5 = mat4.SubMatrix<2, 2, 0, 0>();
REQUIRE(mat5.Get(0, 0) == 1);
REQUIRE(mat5.Get(0, 1) == 2);
REQUIRE(mat5.Get(1, 0) == 4);
REQUIRE(mat5.Get(1, 1) == 5);
mat5 = mat4.SubMatrix<2, 2, 1, 1>();
REQUIRE(mat5.Get(0, 0) == 5);
REQUIRE(mat5.Get(0, 1) == 6);
REQUIRE(mat5.Get(1, 0) == 8);
REQUIRE(mat5.Get(1, 1) == 9);
Matrix<3, 1> mat6 = mat4.SubMatrix<3, 1, 0, 0>();
REQUIRE(mat6.Get(0, 0) == 1);
REQUIRE(mat6.Get(1, 0) == 4);
REQUIRE(mat6.Get(2, 0) == 7);
Matrix<1, 3> mat7 = mat4.SubMatrix<1, 3, 0, 0>();
REQUIRE(mat7.Get(0, 0) == 1);
REQUIRE(mat7.Get(0, 1) == 2);
REQUIRE(mat7.Get(0, 2) == 3);
}
SECTION("Set Sub-Matrices") {
Matrix<3, 3> startMatrix{1, 2, 3, 4, 5, 6, 7, 8, 9};
Matrix<3, 3> mat4 = startMatrix;
Matrix<2, 2> mat5{10, 11, 12, 13};
mat4.SetSubMatrix(0, 0, mat5);
REQUIRE(mat4.Get(0, 0) == 10);
REQUIRE(mat4.Get(0, 1) == 11);
REQUIRE(mat4.Get(1, 0) == 12);
REQUIRE(mat4.Get(1, 1) == 13);
mat4 = startMatrix;
mat4.SetSubMatrix(1, 1, mat5);
REQUIRE(mat4.Get(1, 1) == 10);
REQUIRE(mat4.Get(1, 2) == 11);
REQUIRE(mat4.Get(2, 1) == 12);
REQUIRE(mat4.Get(2, 2) == 13);
Matrix<3, 1> mat6{10, 11, 12};
mat4.SetSubMatrix(0, 0, mat6);
REQUIRE(mat4.Get(0, 0) == 10);
REQUIRE(mat4.Get(1, 0) == 11);
REQUIRE(mat4.Get(2, 0) == 12);
Matrix<1, 3> mat7{10, 11, 12};
mat4.SetSubMatrix(0, 0, mat7);
REQUIRE(mat4.Get(0, 0) == 10);
REQUIRE(mat4.Get(0, 1) == 11);
REQUIRE(mat4.Get(0, 2) == 12);
}
}
TEST_CASE("Identity Matrix", "Matrix") {
SECTION("Square Matrix") {
Matrix<5, 5> matrix = Matrix<5, 5>::Identity();
uint32_t oneColumnIndex{0};
for (uint32_t row = 0; row < 5; row++) {
for (uint32_t column = 0; column < 5; column++) {
float value = matrix[row][column];
if (oneColumnIndex == column) {
REQUIRE_THAT(value, Catch::Matchers::WithinRel(1.0f, 1e-6f));
} else {
REQUIRE_THAT(value, Catch::Matchers::WithinRel(0.0f, 1e-6f));
// basically re-run all of the previous tests with huge matrices and time the
// results.
TEST_CASE("Timing Tests", "Matrix") {
std::array<float, 50 * 50> arr1{};
for (uint16_t i{0}; i < 50 * 50; i++) {
arr1[i] = i;
}
std::array<float, 50 * 50> arr2{5, 6, 7, 8};
for (uint16_t i{50 * 50}; i < 2 * 50 * 50; i++) {
arr2[i] = i;
}
oneColumnIndex++;
Matrix<50, 50> mat1{arr1};
Matrix<50, 50> mat2{arr2};
Matrix<50, 50> mat3{};
// A smaller matrix to use for really badly optimized operations
Matrix<4, 4> mat4{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
Matrix<4, 4> mat5{};
SECTION("Addition") {
for (uint32_t i{0}; i < 10000; i++) {
mat3 = mat1 + mat2;
}
}
SECTION("Wide Matrix") {
Matrix<2, 5> matrix = Matrix<2, 5>::Identity();
uint32_t oneColumnIndex{0};
for (uint32_t row = 0; row < 2; row++) {
for (uint32_t column = 0; column < 5; column++) {
float value = matrix[row][column];
if (oneColumnIndex == column && row < 3) {
REQUIRE_THAT(value, Catch::Matchers::WithinRel(1.0f, 1e-6f));
} else {
REQUIRE_THAT(value, Catch::Matchers::WithinRel(0.0f, 1e-6f));
}
}
oneColumnIndex++;
SECTION("Subtraction") {
for (uint32_t i{0}; i < 10000; i++) {
mat3 = mat1 - mat2;
}
}
SECTION("Tall Matrix") {
Matrix<5, 2> matrix = Matrix<5, 2>::Identity();
uint32_t oneColumnIndex{0};
for (uint32_t row = 0; row < 5; row++) {
for (uint32_t column = 0; column < 2; column++) {
float value = matrix[row][column];
if (oneColumnIndex == column) {
REQUIRE_THAT(value, Catch::Matchers::WithinRel(1.0f, 1e-6f));
} else {
REQUIRE_THAT(value, Catch::Matchers::WithinRel(0.0f, 1e-6f));
SECTION("Multiplication") {
for (uint32_t i{0}; i < 1000; i++) {
mat3 = mat1 * mat2;
}
}
oneColumnIndex++;
SECTION("Scalar Multiplication") {
for (uint32_t i{0}; i < 10000; i++) {
mat3 = mat1 * 3;
}
}
SECTION("Element Multiply") {
for (uint32_t i{0}; i < 10000; i++) {
mat1.ElementMultiply(mat2, mat3);
}
}
SECTION("Element Divide") {
for (uint32_t i{0}; i < 10000; i++) {
mat1.ElementDivide(mat2, mat3);
}
}
SECTION("Minor Matrix") {
// what about matrices of 0,0 or 1,1?
// minor matrix for 2x2 matrix
Matrix<49, 49> minorMat1{};
for (uint32_t i{0}; i < 10000; i++) {
mat1.MinorMatrix(minorMat1, 0, 0);
}
}
SECTION("Determinant") {
for (uint32_t i{0}; i < 100000; i++) {
float det1 = mat4.Det();
}
}
SECTION("Matrix of Minors") {
for (uint32_t i{0}; i < 100000; i++) {
mat4.MatrixOfMinors(mat5);
}
}
SECTION("Invert") {
for (uint32_t i{0}; i < 100000; i++) {
mat4.Invert(mat5);
}
};
SECTION("Transpose") {
for (uint32_t i{0}; i < 10000; i++) {
mat1.Transpose(mat3);
}
}
SECTION("Normalize") {
for (uint32_t i{0}; i < 10000; i++) {
mat1.Normalize(mat3);
}
}
SECTION("GET ROW") {
Matrix<1, 50> mat1Rows{};
for (uint32_t i{0}; i < 1000000; i++) {
mat1.GetRow(0, mat1Rows);
}
}
SECTION("GET COLUMN") {
Matrix<50, 1> mat1Columns{};
for (uint32_t i{0}; i < 1000000; i++) {
mat1.GetColumn(0, mat1Columns);
}
}
}
// TODO: Add test for scalar division
TEST_CASE("Euclidean Norm", "Matrix") {
SECTION("2x2 Normalize") {
Matrix<2, 2> mat1{1, 2, 3, 4};
Matrix<2, 2> mat2{};
mat2 = mat1 / mat1.EuclideanNorm();
float sqrt_30{static_cast<float>(sqrt(30.0f))};
REQUIRE(mat2.Get(0, 0) == 1 / sqrt_30);
REQUIRE(mat2.Get(0, 1) == 2 / sqrt_30);
REQUIRE(mat2.Get(1, 0) == 3 / sqrt_30);
REQUIRE(mat2.Get(1, 1) == 4 / sqrt_30);
REQUIRE_THAT(matrixSum(mat2), Catch::Matchers::WithinRel(1.0f, 1e-6f));
}
SECTION("2x1 (Vector) Normalize") {
Matrix<2, 1> mat1{-0.878877044, 2.92092276};
Matrix<2, 1> mat2{};
mat2 = mat1 / mat1.EuclideanNorm();
REQUIRE_THAT(mat2.Get(0, 0),
Catch::Matchers::WithinRel(-0.288129855179f, 1e-6f));
REQUIRE_THAT(mat2.Get(1, 0),
Catch::Matchers::WithinRel(0.957591346325f, 1e-6f));
float sum = matrixSum(mat2);
REQUIRE_THAT(sum, Catch::Matchers::WithinRel(1.0f, 1e-6f));
}
SECTION("Normalized vectors sum to 1") {
Matrix<9, 1> mat1{1, 2, 3, 4, 5, 6, 7, 8, 9};
Matrix<9, 1> mat2;
mat2 = mat1 / mat1.EuclideanNorm();
float sum = matrixSum(mat2);
REQUIRE_THAT(sum, Catch::Matchers::WithinRel(1.0f, 1e-6f));
Matrix<2, 3> mat3{1, 2, 3, 4, 5, 6};
Matrix<2, 3> mat4{};
mat4 = mat3 / mat3.EuclideanNorm();
sum = matrixSum(mat4);
REQUIRE_THAT(sum, Catch::Matchers::WithinRel(1.0f, 1e-6f));
}
}
TEST_CASE("QR Decompositions", "Matrix") {
SECTION("2x2 QRDecomposition") {
Matrix<2, 2> A{1.0f, 2.0f, 3.0f, 4.0f};
Matrix<2, 2> Q{}, R{};
A.QRDecomposition(Q, R);
// Check that Q * R ≈ A
Matrix<2, 2> QR{};
Q.Mult(R, QR);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
REQUIRE_THAT(QR[i][j], Catch::Matchers::WithinRel(A[i][j], 1e-4f));
}
}
// Check that Q is orthonormal: Qᵀ * Q ≈ I
Matrix<2, 2> Qt = Q.Transpose();
Matrix<2, 2> QtQ{};
Qt.Mult(Q, QtQ);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
if (i == j)
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinRel(1.0f, 1e-4f));
else
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinAbs(0.0f, 1e-4f));
}
}
// Optional: R should be upper triangular
REQUIRE(std::fabs(R[1][0]) < 1e-4f);
// check that all Q values are correct
REQUIRE_THAT(Q[0][0], Catch::Matchers::WithinRel(0.3162f, 1e-4f));
REQUIRE_THAT(Q[0][1], Catch::Matchers::WithinRel(0.94868f, 1e-4f));
REQUIRE_THAT(Q[1][0], Catch::Matchers::WithinRel(0.94868f, 1e-4f));
REQUIRE_THAT(Q[1][1], Catch::Matchers::WithinRel(-0.3162f, 1e-4f));
// check that all R values are correct
REQUIRE_THAT(R[0][0], Catch::Matchers::WithinRel(3.16228f, 1e-4f));
REQUIRE_THAT(R[0][1], Catch::Matchers::WithinRel(4.42719f, 1e-4f));
REQUIRE_THAT(R[1][0], Catch::Matchers::WithinRel(0.0f, 1e-4f));
REQUIRE_THAT(R[1][1], Catch::Matchers::WithinRel(0.63246f, 1e-4f));
}
SECTION("3x3 QRDecomposition") {
// this symmetrix tridiagonal matrix is well behaved for testing
Matrix<3, 3> A{1, 2, 3, 4, 5, 6, 7, 8, 9};
Matrix<3, 3> Q{}, R{};
A.QRDecomposition(Q, R);
// Check that Q * R ≈ A
Matrix<3, 3> QR{};
QR = Q * R;
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
REQUIRE_THAT(QR[i][j], Catch::Matchers::WithinRel(A[i][j], 1e-4f));
}
}
// Check that Qᵀ * Q ≈ I
// This MUST be true even if the rank of A is 2 because without this,
// calculating eigenvalues/vectors will not work.
Matrix<3, 3> Qt = Q.Transpose();
Matrix<3, 3> QtQ{};
QtQ = Qt * Q;
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
if (i == j)
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinRel(1.0f, 1e-4f));
else
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinAbs(0.0f, 1e-4f));
}
}
// Optional: Check R is upper triangular
for (int i = 1; i < 3; ++i) {
for (int j = 0; j < i; ++j) {
REQUIRE(std::fabs(R[i][j]) < 1e-4f);
}
}
// check that all Q values are correct
REQUIRE_THAT(Q[0][0], Catch::Matchers::WithinRel(0.1231f, 1e-4f));
REQUIRE_THAT(Q[0][1], Catch::Matchers::WithinRel(0.904534f, 1e-4f));
REQUIRE_THAT(Q[0][2], Catch::Matchers::WithinRel(0.0f, 1e-4f));
REQUIRE_THAT(Q[1][0], Catch::Matchers::WithinRel(0.49237f, 1e-4f));
REQUIRE_THAT(Q[1][1], Catch::Matchers::WithinRel(0.301511f, 1e-4f));
REQUIRE_THAT(Q[1][2], Catch::Matchers::WithinRel(0.0f, 1e-4f));
REQUIRE_THAT(Q[2][0], Catch::Matchers::WithinRel(0.86164f, 1e-4f));
REQUIRE_THAT(Q[2][1], Catch::Matchers::WithinRel(-0.30151f, 1e-4f));
REQUIRE_THAT(Q[2][2], Catch::Matchers::WithinRel(0.0f, 1e-4f));
// check that all R values are correct
REQUIRE_THAT(R[0][0], Catch::Matchers::WithinRel(8.124038f, 1e-4f));
REQUIRE_THAT(R[0][1], Catch::Matchers::WithinRel(9.60114f, 1e-4f));
REQUIRE_THAT(R[0][2], Catch::Matchers::WithinRel(11.07823f, 1e-4f));
REQUIRE_THAT(R[1][0], Catch::Matchers::WithinRel(0.0f, 1e-4f));
REQUIRE_THAT(R[1][1], Catch::Matchers::WithinRel(0.90453f, 1e-4f));
REQUIRE_THAT(R[1][2], Catch::Matchers::WithinRel(1.80907f, 1e-4f));
REQUIRE_THAT(R[2][0], Catch::Matchers::WithinRel(0.0f, 1e-4f));
REQUIRE_THAT(R[2][1], Catch::Matchers::WithinRel(0.0f, 1e-4f));
REQUIRE_THAT(R[2][2], Catch::Matchers::WithinRel(0.0f, 1e-4f));
}
SECTION("4x2 QRDecomposition") {
// A simple 4x2 matrix
Matrix<4, 2> A{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f};
Matrix<4, 2> Q{};
Matrix<2, 2> R{};
A.QRDecomposition(Q, R);
// Check that Q * R ≈ A
Matrix<4, 2> QR{};
Q.Mult(R, QR);
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 2; ++j) {
REQUIRE_THAT(QR[i][j], Catch::Matchers::WithinRel(A[i][j], 1e-4f));
}
}
// Check that Qᵀ * Q ≈ I₂
Matrix<2, 4> Qt = Q.Transpose();
Matrix<2, 2> QtQ{};
Qt.Mult(Q, QtQ);
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 2; ++j) {
if (i == j)
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinRel(1.0f, 1e-4f));
else
REQUIRE_THAT(QtQ[i][j], Catch::Matchers::WithinAbs(0.0f, 1e-4f));
}
}
// Check R is upper triangular (i > j ⇒ R[i][j] ≈ 0)
for (int i = 1; i < 2; ++i) {
for (int j = 0; j < i; ++j) {
REQUIRE(std::fabs(R[i][j]) < 1e-4f);
}
}
}
}
// TEST_CASE("Eigenvalues and Vectors", "Matrix") {
// SECTION("2x2 Eigen") {
// Matrix<2, 2> A{1.0f, 2.0f, 3.0f, 4.0f};
// Matrix<2, 2> vectors{};
// Matrix<2, 1> values{};
// A.EigenQR(vectors, values, 1000000, 1e-20f);
// REQUIRE_THAT(vectors[0][0], Catch::Matchers::WithinRel(0.41597f, 1e-4f));
// REQUIRE_THAT(vectors[1][0], Catch::Matchers::WithinRel(0.90938f, 1e-4f));
// REQUIRE_THAT(values[0][0], Catch::Matchers::WithinRel(5.372282f, 1e-4f));
// REQUIRE_THAT(values[1][0], Catch::Matchers::WithinRel(-0.372281f,
// 1e-4f));
// }
// SECTION("3x3 Eigen") {
// // this symmetrix tridiagonal matrix is well behaved for testing
// Matrix<3, 3> A{1, 2, 3, 4, 5, 6, 7, 8, 9};
// Matrix<3, 3> vectors{};
// Matrix<3, 1> values{};
// A.EigenQR(vectors, values, 1000000, 1e-8f);
// std::string strBuf1 = "";
// vectors.ToString(strBuf1);
// std::cout << "Vectors:\n" << strBuf1 << std::endl;
// strBuf1 = "";
// values.ToString(strBuf1);
// std::cout << "Values:\n" << strBuf1 << std::endl;
// REQUIRE_THAT(vectors[0][0], Catch::Matchers::WithinRel(0.23197f, 1e-4f));
// REQUIRE_THAT(vectors[1][0], Catch::Matchers::WithinRel(0.525322f,
// 1e-4f)); REQUIRE_THAT(vectors[2][0], Catch::Matchers::WithinRel(0.81867f,
// 1e-4f)); REQUIRE_THAT(values[0][0], Catch::Matchers::WithinRel(-1.11684f,
// 1e-4f)); REQUIRE_THAT(values[1][0], Catch::Matchers::WithinRel(0.0f,
// 1e-4f)); REQUIRE_THAT(values[2][0], Catch::Matchers::WithinRel(16.1168f,
// 1e-4f));
// }
// }

View File

@@ -1,119 +0,0 @@
// include the unit test framework first
#include <catch2/catch_test_macros.hpp>
#include <catch2/matchers/catch_matchers_floating_point.hpp>
// include the module you're going to test next
#include "Matrix.hpp"
// any other libraries
#include <array>
#include <cmath>
// basically re-run all of the matrix tests with huge matrices and time the
// results.
TEST_CASE("Timing Tests", "Matrix") {
std::array<float, 50 * 50> arr1{};
for (uint16_t i{0}; i < 50 * 50; i++) {
arr1[i] = i;
}
std::array<float, 50 * 50> arr2{5, 6, 7, 8};
for (uint16_t i{50 * 50}; i < 2 * 50 * 50; i++) {
arr2[i] = i;
}
Matrix<50, 50> mat1{arr1};
Matrix<50, 50> mat2{arr2};
Matrix<50, 50> mat3{};
// A smaller matrix to use for really badly optimized operations
Matrix<4, 4> mat4{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
Matrix<4, 4> mat5{};
SECTION("Addition") {
for (uint32_t i{0}; i < 10000; i++) {
mat3 = mat1 + mat2;
}
}
SECTION("Subtraction") {
for (uint32_t i{0}; i < 10000; i++) {
mat3 = mat1 - mat2;
}
}
SECTION("Multiplication") {
for (uint32_t i{0}; i < 1000; i++) {
mat3 = mat1 * mat2;
}
}
SECTION("Scalar Multiplication") {
for (uint32_t i{0}; i < 10000; i++) {
mat3 = mat1 * 3;
}
}
SECTION("Element Multiply") {
for (uint32_t i{0}; i < 10000; i++) {
mat1.ElementMultiply(mat2, mat3);
}
}
SECTION("Element Divide") {
for (uint32_t i{0}; i < 10000; i++) {
mat1.ElementDivide(mat2, mat3);
}
}
SECTION("Minor Matrix") {
// what about matrices of 0,0 or 1,1?
// minor matrix for 2x2 matrix
Matrix<49, 49> minorMat1{};
for (uint32_t i{0}; i < 10000; i++) {
mat1.MinorMatrix(minorMat1, 0, 0);
}
}
SECTION("Determinant") {
for (uint32_t i{0}; i < 100000; i++) {
float det1 = mat4.Det();
}
}
SECTION("Matrix of Minors") {
for (uint32_t i{0}; i < 100000; i++) {
mat4.MatrixOfMinors(mat5);
}
}
SECTION("Invert") {
for (uint32_t i{0}; i < 100000; i++) {
mat5 = mat4.Invert();
}
};
SECTION("Transpose") {
for (uint32_t i{0}; i < 10000; i++) {
mat3 = mat1.Transpose();
}
}
SECTION("Normalize") {
for (uint32_t i{0}; i < 10000; i++) {
mat3 = mat1 / mat1.EuclideanNorm();
}
}
SECTION("GET ROW") {
Matrix<1, 50> mat1Rows{};
for (uint32_t i{0}; i < 1000000; i++) {
mat1.GetRow(0, mat1Rows);
}
}
SECTION("GET COLUMN") {
Matrix<50, 1> mat1Columns{};
for (uint32_t i{0}; i < 1000000; i++) {
mat1.GetColumn(0, mat1Columns);
}
}
}

View File

@@ -1,103 +0,0 @@
// include the unit test framework first
#include <catch2/catch_test_macros.hpp>
#include <catch2/matchers/catch_matchers_floating_point.hpp>
// include the module you're going to test next
#include "Quaternion.h"
// any other libraries
#include <array>
#include <cmath>
#include <iostream>
TEST_CASE("Vector Math", "Vector")
{
Quaternion q1{1, 2, 3, 4};
Quaternion q2{5, 6, 7, 8};
SECTION("Initialization")
{
// explicit initialization
REQUIRE(q1.w == 1);
REQUIRE(q1.v1 == 2);
REQUIRE(q1.v2 == 3);
REQUIRE(q1.v3 == 4);
// fill initialization
Quaternion q3{0};
REQUIRE(q3.w == 0);
REQUIRE(q3.v1 == 0);
REQUIRE(q3.v2 == 0);
REQUIRE(q3.v3 == 0);
// copy initialization
Quaternion q4{q1};
REQUIRE(q4.w == 1);
REQUIRE(q4.v1 == 2);
REQUIRE(q4.v2 == 3);
REQUIRE(q4.v3 == 4);
// matrix initialization
Matrix<1, 4> m1{1, 2, 3, 4};
Quaternion q5{m1};
REQUIRE(q5.w == 1);
REQUIRE(q5.v1 == 2);
REQUIRE(q5.v2 == 3);
REQUIRE(q5.v3 == 4);
// array initialization
Quaternion q6{std::array<float, 4>{1, 2, 3, 4}};
REQUIRE(q6.w == 1);
REQUIRE(q6.v1 == 2);
REQUIRE(q6.v2 == 3);
REQUIRE(q6.v3 == 4);
}
SECTION("Equals")
{
Quaternion q3{0, 0, 0, 0};
q3 = q1;
REQUIRE(q3.w == 1);
REQUIRE(q3.v1 == 2);
REQUIRE(q3.v2 == 3);
REQUIRE(q3.v3 == 4);
}
SECTION("Array access")
{
REQUIRE(q1[0] == 1);
REQUIRE(q1[1] == 2);
REQUIRE(q1[2] == 3);
REQUIRE(q1[3] == 4);
}
SECTION("Addition")
{
Quaternion q3 = q1 + q2;
REQUIRE(q3.w == 6);
REQUIRE(q3.v1 == 8);
REQUIRE(q3.v2 == 10);
REQUIRE(q3.v3 == 12);
}
SECTION("Multiplication")
{
Quaternion q3;
q1.Q_Mult(q2, q3);
REQUIRE(q3.w == -60);
REQUIRE(q3.v1 == 12);
REQUIRE(q3.v2 == 30);
REQUIRE(q3.v3 == 24);
}
SECTION("Rotation")
{
Quaternion q3{Quaternion::FromAngleAndAxis(M_PI / 2, Matrix<1, 3>{0, 0, 1})};
Quaternion q4{0, 1, 0, 0};
Quaternion q5;
q3.Rotate(q4, q5);
REQUIRE_THAT(q5.v1, Catch::Matchers::WithinRel(0.0f, 1e-6f));
REQUIRE_THAT(q5.v2, Catch::Matchers::WithinRel(1.0f, 1e-6f));
REQUIRE_THAT(q5.v3, Catch::Matchers::WithinRel(0.0f, 1e-6f));
}
}

View File

@@ -0,0 +1,7 @@
# be in the root folder of this project when you run this
cd build/
ninja matrix-tests
echo "Running tests. This will take a while."
./unit-tests/matrix-tests -n "Timing Tests" -d yes > ../unit-tests/matrix-test-timings-temp.txt
cd ../unit-tests/
python3 test-timing-post-process.py

View File

@@ -1,56 +0,0 @@
Randomness seeded to: 2444679151
0.180 s: Addition
0.180 s: Timing Tests
0.177 s: Subtraction
0.177 s: Timing Tests
1.868 s: Multiplication
1.868 s: Timing Tests
0.127 s: Scalar Multiplication
0.127 s: Timing Tests
0.173 s: Element Multiply
0.173 s: Timing Tests
0.178 s: Element Divide
0.178 s: Timing Tests
0.172 s: Minor Matrix
0.172 s: Timing Tests
0.103 s: Determinant
0.103 s: Timing Tests
0.411 s: Matrix of Minors
0.411 s: Timing Tests
0.109 s: Invert
0.109 s: Timing Tests
0.122 s: Transpose
0.122 s: Timing Tests
0.190 s: Normalize
0.190 s: Timing Tests
0.006 s: GET ROW
0.006 s: Timing Tests
0.235 s: GET COLUMN
0.235 s: Timing Tests
===============================================================================
test cases: 1 | 1 passed
assertions: - none -
Command being timed: "build/unit-tests/matrix-timing-tests -d yes"
User time (seconds): 4.05
System time (seconds): 0.00
Percent of CPU this job got: 100%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:04.05
Average shared text size (kbytes): 0
Average unshared data size (kbytes): 0
Average stack size (kbytes): 0
Average total size (kbytes): 0
Maximum resident set size (kbytes): 3200
Average resident set size (kbytes): 0
Major (requiring I/O) page faults: 184
Minor (reclaiming a frame) page faults: 171
Voluntary context switches: 1
Involuntary context switches: 26
Swaps: 0
File system inputs: 12
File system outputs: 1
Socket messages sent: 0
Socket messages received: 0
Signals delivered: 0
Page size (bytes): 4096
Exit status: 0

View File

@@ -1,45 +0,0 @@
// include the unit test framework first
#include <catch2/catch_test_macros.hpp>
#include <catch2/matchers/catch_matchers_floating_point.hpp>
// include the module you're going to test next
#include "Vector3D.hpp"
#include "Matrix.hpp"
// any other libraries
#include <array>
#include <cmath>
#include <iostream>
TEST_CASE("Vector Math", "Vector")
{
V3D<float> v1{1, 2, 3};
V3D<float> v2{4, 5, 6};
V3D<float> v3{};
SECTION("Initialization")
{
// list initialization
REQUIRE(v1.x == 1);
REQUIRE(v1.y == 2);
REQUIRE(v1.z == 3);
// copy initialization
V3D<float> v4{v2};
REQUIRE(v4.x == 4);
REQUIRE(v4.y == 5);
REQUIRE(v4.z == 6);
// empty initialization
REQUIRE(v3.x == 0);
REQUIRE(v3.y == 0);
REQUIRE(v3.z == 0);
// matrix initialization
Matrix<1, 3> mat1{v1.ToArray()};
V3D<float> v5{mat1};
REQUIRE(v5.x == v1.x);
REQUIRE(v5.y == v1.y);
REQUIRE(v5.z == v1.z);
}
}