Finished implimenting all of the matrix math functions

This commit is contained in:
2024-12-09 22:58:04 -05:00
parent ac8c70d5a4
commit 62ba7d8b3e

265
Matrix.h
View File

@@ -1,14 +1,22 @@
#pragma once
#include <cstdint>
#include <array>
#include <type_traits>
#include <cstdlib>
template <uint8_t rows, uint8_t columns>
class Matrix{
public:
Matrix();
Matrix(const std::array<float, columns> & array);
/**
* @brief Element-wise matrix addition
* @param other the other matrix to add to this one
* @param result A buffer to store the result into
* @note there is no problem if result == this
*/
void Add(const Matrix<rows, columns> & other, Matrix<rows, columns> & result) const;
@@ -16,6 +24,7 @@ class Matrix{
* @brief Element-wise subtract matrix
* @param other the other matrix to subtract from this one
* @param result A buffer to store the result into
* @note there is no problem if result == this
*/
void Subtract(const Matrix<rows, columns> & other, Matrix<rows, columns> & result) const;
@@ -31,12 +40,14 @@ class Matrix{
* @brief Multiply the matrix by a scalar
* @param scalar the the scalar to multiply by
* @param result A buffer to store the result into
* @note there is no problem if result == this
*/
void Multiply(float scalar, Matrix<rows, columns> & result) const;
/**
* @brief Invert this matrix
* @param result A buffer to store the result into
* @warning this is super slow! Only call it if you absolutely have to!!!
*/
void Invert(Matrix<rows, columns> & result) const;
@@ -55,12 +66,19 @@ class Matrix{
/**
* @return Get the determinant of the matrix
*/
float Det();
float Det() const;
/**
* @brief Calculate the eigenvalues for a square matrix
* @param result a buffer to store the result into
*/
void EigenValues(Matrix<rows, 1> & result) const;
/**
* @brief Element-wise multiply the two matrices
* @param other the other matrix to multiply into this one
* @param result A buffer to store the result into
* @note there is no problem if result == this
*/
void ElementMultiply(const Matrix<rows, columns> & other, Matrix<rows, columns> & result) const;
@@ -68,6 +86,7 @@ class Matrix{
* @brief Element-wise divide the two matrices
* @param other the other matrix to multiply into this one
* @param result A buffer to store the result into
* @note there is no problem if result == this
*/
void ElementDivide(const Matrix<rows, columns> & other, Matrix<rows, columns> & result) const;
@@ -79,19 +98,26 @@ class Matrix{
*/
float & Get(uint8_t row_index, uint8_t column_index) const;
/**
* @brief get the specified row of the matrix returned as a reference to the internal array
*/
std::array<float, columns> & operator[](uint8_t row_index) const;
void operator=(Matrix<rows, columns> & other);
/**
* @brief Get a row from the matrix
* @param row_index the row index to get
* @param row a buffer to write the row into
*/
void GetRow(uint8_t row_index, Matrix<rows, 1> & row) const;
void GetRow(uint8_t row_index, Matrix<1, columns> & row) const;
/**
* @brief Get a row from the matrix
* @param column_index the row index to get
* @param column a buffer to write the row into
*/
void GetColumn(uint8_t column_index, Matrix<1, columns> & column) const;
void GetColumn(uint8_t column_index, Matrix<rows, 1> & column) const;
/**
* @brief Get the number of rows in this matrix
@@ -104,7 +130,6 @@ class Matrix{
constexpr uint8_t GetColumnSize(){return columns;}
private:
/**
* @brief take the dot product of the two vectors
*/
@@ -116,13 +141,42 @@ class Matrix{
*/
void zeroMatrix();
void matrixOfMinors(const Matrix<rows, columns> & input, Matrix<rows, columns> & result) const;
void matrixOfMinors(Matrix<rows, columns> & result) const;
void adjugate(const Matrix<rows, columns> & input, Matrix<rows, columns> & result) const;
void minorMatrix(Matrix<rows-1, columns-1> & result, uint8_t row_idx, uint8_t column_idx) const;
void adjugate(Matrix<rows, columns> & result) const;
/**
* @brief reduce the matrix so the sum of its elements equal 1
* @param result a buffer to store the result into
*/
void normalize(Matrix<rows, columns> & result) const;
constexpr bool isSquare(){return rows==columns;}
std::array<std::array<float, columns>, rows> matrix;
};
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns>::Matrix(){
this->zeroMatrix();
}
template <uint8_t rows, uint8_t columns>
Matrix<rows, columns>::Matrix(const std::array<float, columns> & array){
for(uint8_t row_idx{0}; row_idx < rows; row_idx++){
for(uint8_t column_idx{0}; column_idx < columns; column_idx++){
uint16_t i = static_cast<uint16_t>(row_idx) + static_cast<uint16_t>(column_idx);
if(i < array.size()){
this->Get(row_idx, column_idx) = array[i];
}
else{
this->Get(row_idx, column_idx) = 0;
}
}
}
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::Add(const Matrix<rows, columns> & other, Matrix<rows, columns> & result) const{
for(uint8_t row{0}; row < rows; row++){
@@ -183,14 +237,15 @@ void Matrix<rows, columns>::Invert(Matrix<rows, columns> & result) const{
return;
}
// TODO: This algorithm is really inneficient because of the matrix of minors. We should make a different algorithm
// how to calculate the inverse: https://www.mathsisfun.com/algebra/matrix-inverse-minors-cofactors-adjugate.html
// calculate the matrix of minors
Matrix<rows, columns> minors{};
this->matrixOfMinors(this, minors);
this->matrixOfMinors(minors);
// now adjugate the matrix and save it in our output
this->adjugate(minors, result);
minors.adjugate(result);
float determinant = this->Det();
// scale the result by 1/determinant and we have our answer
@@ -199,5 +254,199 @@ void Matrix<rows, columns>::Invert(Matrix<rows, columns> & result) const{
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::Transpose(Matrix<columns, rows> & result) const{
for(uint8_t column_idx{0}; column_idx < rows; column_idx++){
for(uint8_t row_idx{0}; row_idx < columns; row_idx++){
result.Get(row_idx, column_idx) = this->Get(column_idx, row_idx);
}
}
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::Square(Matrix<rows, columns> & result) const{
static_assert(this->isSquare(), "You can't square an non-square matrix.");
this->Multiply(this, result);
}
template <uint8_t rows, uint8_t columns>
float Matrix<rows, columns>::Det() const{
static_assert(this->isSquare(), "You can't take the determinant of a non-square matrix.");
Matrix<1, columns> eigenValues{};
this->EigenValues(eigenValues);
float determinant{1};
for(uint8_t i{0}; i < columns; i++){
determinant *= eigenValues.Get(0, i);
}
return determinant;
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::EigenValues(Matrix<rows, 1> & eigenvalues) const{
static_assert(rows == columns, "Eigenvalues can only be computed for square matrices.");
// I got this code from: https://www.quora.com/What-is-the-C-code-for-finding-eigenvalues
Matrix<rows, 1> v{};
Matrix<rows, 1> Av{};
Matrix<rows, 1> z{};
float d = 0.0, d_old = 0.0;
constexpr float convergence_value{1e-6};
constexpr uint16_t max_iterations{500};
// Initialize v as a random vector
for (int i = 0; i < rows; i++) {
v[0][i] = rand() / RAND_MAX;
}
// run this loop until the eigenvalues converge or we give up
for (uint16_t k{0}; k < max_iterations; k++) {
/* Multiply A by v */
for (int i = 0; i < rows; i++) {
Av[0][i] = 0.0;
for (int j = 0; j < rows; j++) {
Av[0][i] += this->Get(0, i * rows + j) * v[0][j];
}
}
// Calculate the eigenvalue and update v
d_old = d;
d = dot_product(v, Av, rows);
for (int i = 0; i < rows; i++) {
z[0][i] = Av[0][i] - d * v[0][i];
}
z.normalize(z);
for (int i = 0; i < rows; i++) {
v[0][i] = z[0][i];
}
/* Check for convergence */
if (fabs(d - d_old) < convergence_value) {
eigenvalues[0][k] = d;
k++;
d = 0.0;
for (int i = 0; i < rows; i++) {
v[0][i] = rand() / RAND_MAX;
}
}
}
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::ElementMultiply(const Matrix<rows, columns> & other, Matrix<rows, columns> & result) const{
for(uint8_t row_idx{0}; row_idx < rows; row_idx++){
for(uint8_t column_idx{0}; column_idx < columns; column_idx++){
result.Get(row_idx, column_idx) = this->Get(row_idx, column_idx) * other.Get(row_idx, column_idx);
}
}
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::ElementDivide(const Matrix<rows, columns> & other, Matrix<rows, columns> & result) const{
for(uint8_t row_idx{0}; row_idx < rows; row_idx++){
for(uint8_t column_idx{0}; column_idx < columns; column_idx++){
result.Get(row_idx, column_idx) = this->Get(row_idx, column_idx) / other.Get(row_idx, column_idx);
}
}
}
template <uint8_t rows, uint8_t columns>
float & Matrix<rows, columns>::Get(uint8_t row_index, uint8_t column_index) const{
return this->matrix[row_index][column_index];
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::GetRow(uint8_t row_index, Matrix<1, columns> & row) const{
row = Matrix<1, columns>(this->matrix[row_index]);
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::GetColumn(uint8_t column_index, Matrix<rows, 1> & column) const{
for(uint8_t row_idx{0}; row_idx < rows; row_idx++){
column.Get(0, column_index) = this->Get(row_idx, column_index);
}
}
template <uint8_t rows, uint8_t columns>
template <uint8_t vector_size>
float Matrix<rows, columns>::dotProduct(const Matrix<vector_size, 1> & vec1, const Matrix<vector_size, 1> & vec2){
float sum{0};
for(uint8_t i{0}; i < vector_size; i++){
sum += vec1.Get(i, 0) * vec2.Get(i, 0);
}
return sum;
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::zeroMatrix(){
for(uint8_t row_idx{0}; row_idx < rows; row_idx++){
for(uint8_t column_idx{0}; column_idx < columns; column_idx++){
this->matrix[row_idx][column_idx] = 0;
}
}
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::matrixOfMinors(Matrix<rows, columns> & result) const{
Matrix<rows-1, columns-1> minorMatrix{};
for(uint8_t row_idx{0}; row_idx < rows; row_idx++){
for(uint8_t column_idx{0}; column_idx < columns; column_idx++){
this->minorMatrix(minorMatrix, row_idx, column_idx);
result.Get(row_idx, column_idx) = minorMatrix.Det();
}
}
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::minorMatrix(Matrix<rows-1, columns-1> & result, uint8_t row_idx, uint8_t column_idx) const{
std::array<float, (rows-1)*(columns-1)> subArray{};
for(uint8_t row_iter{0}; row_iter < rows; row_iter++){
for(uint8_t column_iter{0}; column_iter < columns; column_iter++){
uint16_t i = static_cast<uint16_t>(row_iter) + static_cast<uint16_t>(column_iter);
if(row_iter == row_idx || column_iter == column_idx){
continue;
}
subArray[i] = this->Get(row_iter, column_iter);
}
}
result = Matrix<rows-1, columns-1>{subArray};
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::adjugate(Matrix<rows, columns> & result) const{
for(uint8_t row_iter{0}; row_iter < rows; row_iter++){
for(uint8_t column_iter{0}; column_iter < columns; column_iter++){
float sign = ((row_iter + 1) % 2) ? -1 : 1;
sign *= ((column_iter + 1) % 2) ? -1 : 1;
result.Get(row_iter, column_iter) = this->Get(row_iter, column_iter) * sign;
}
}
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::normalize(Matrix<rows, columns> & result) const{
float sum{0};
for(uint8_t column_idx{0}; column_idx < rows; column_idx++){
for(uint8_t row_idx{0}; row_idx < columns; row_idx++){
sum += this->Get(row_idx, column_idx);
}
}
if(sum == 0){
// this wouldn't do anything anyways
result.zeroMatrix();
return;
}
for(uint8_t column_idx{0}; column_idx < rows; column_idx++){
for(uint8_t row_idx{0}; row_idx < columns; row_idx++){
result.Get(row_idx, column_idx) = this->Get(row_idx, column_idx) / sum;
}
}
}