Replaced normalize with EuclideanNorm
Some checks failed
Merge-Checker / build_and_test (pull_request) Failing after 21s
Some checks failed
Merge-Checker / build_and_test (pull_request) Failing after 21s
This commit is contained in:
@@ -277,6 +277,11 @@ void Matrix<rows, columns>::ToString(std::string &stringBuffer) const {
|
||||
}
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
const float *Matrix<rows, columns>::ToArray() const {
|
||||
return this->matrix.data();
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
std::array<float, columns> &
|
||||
Matrix<rows, columns>::operator[](uint8_t row_index) {
|
||||
@@ -418,8 +423,8 @@ Matrix<rows, columns>::adjugate(Matrix<rows, columns> &result) const {
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns> &
|
||||
Matrix<rows, columns>::Normalize(Matrix<rows, columns> &result) const {
|
||||
Matrix<rows, columns> Matrix<rows, columns>::EuclideanNorm() const {
|
||||
|
||||
float sum{0};
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
||||
@@ -428,14 +433,14 @@ Matrix<rows, columns>::Normalize(Matrix<rows, columns> &result) const {
|
||||
}
|
||||
}
|
||||
|
||||
Matrix<rows, columns> result{};
|
||||
if (sum == 0) {
|
||||
// this wouldn't do anything anyways
|
||||
result.Fill(1e+6);
|
||||
result.Fill(0);
|
||||
return result;
|
||||
}
|
||||
|
||||
sum = sqrt(sum);
|
||||
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
||||
result[row_idx][column_idx] = this->Get(row_idx, column_idx) / sum;
|
||||
@@ -491,11 +496,9 @@ void Matrix<rows, columns>::SetSubMatrix(
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
void Matrix<rows, columns>::QRDecomposition(Matrix<rows, columns> &Q,
|
||||
Matrix<columns, columns> &R) const {
|
||||
|
||||
static_assert(columns <= rows, "QR decomposition requires columns <= rows");
|
||||
// Gram-Schmidt orthogonalization
|
||||
Matrix<rows, 1> a_col, u, e, proj;
|
||||
Matrix<rows, 1> q_col;
|
||||
|
||||
Matrix<rows, 1> a_col, u, q_col, proj;
|
||||
Q.Fill(0);
|
||||
R.Fill(0);
|
||||
|
||||
@@ -505,18 +508,17 @@ void Matrix<rows, columns>::QRDecomposition(Matrix<rows, columns> &Q,
|
||||
|
||||
for (uint8_t j = 0; j < k; ++j) {
|
||||
Q.GetColumn(j, q_col);
|
||||
float r_jk = Matrix<rows, 1>::DotProduct(q_col, a_col);
|
||||
float r_jk = Matrix<rows, 1>::DotProduct(
|
||||
q_col, u); // FIXED: use u instead of a_col
|
||||
R[j][k] = r_jk;
|
||||
|
||||
// proj = r_jk * q_j
|
||||
proj = q_col * r_jk;
|
||||
u = u - proj;
|
||||
}
|
||||
|
||||
float norm = sqrt(Matrix<rows, 1>::DotProduct(u, u));
|
||||
if (norm == 0) {
|
||||
norm = 1e-12f; // avoid div by zero
|
||||
}
|
||||
if (norm < 1e-12f)
|
||||
norm = 1e-12f; // for stability
|
||||
|
||||
for (uint8_t i = 0; i < rows; ++i) {
|
||||
Q[i][k] = u[i][0] / norm;
|
||||
|
||||
@@ -132,7 +132,7 @@ public:
|
||||
* @brief reduce the matrix so the sum of its elements equal 1
|
||||
* @param result a buffer to store the result into
|
||||
*/
|
||||
Matrix<rows, columns> &Normalize(Matrix<rows, columns> &result) const;
|
||||
Matrix<rows, columns> EuclideanNorm() const;
|
||||
|
||||
/**
|
||||
* @brief Get a row from the matrix
|
||||
@@ -159,8 +159,16 @@ public:
|
||||
*/
|
||||
constexpr uint8_t GetColumnSize() { return columns; }
|
||||
|
||||
/**
|
||||
* @brief Write a string representation of the matrix into the buffer
|
||||
*/
|
||||
void ToString(std::string &stringBuffer) const;
|
||||
|
||||
/**
|
||||
* @brief Returns the internal representation of the matrix as an array
|
||||
*/
|
||||
const float *ToArray() const;
|
||||
|
||||
/**
|
||||
* @brief Get an element from the matrix
|
||||
* @param row the row index of the element
|
||||
|
||||
@@ -6,115 +6,116 @@
|
||||
* @param angle The angle to rotate by
|
||||
* @param axis The axis to rotate around
|
||||
*/
|
||||
Quaternion Quaternion::FromAngleAndAxis(float angle, const Matrix<1, 3> &axis)
|
||||
{
|
||||
const float halfAngle = angle / 2;
|
||||
const float sinHalfAngle = sin(halfAngle);
|
||||
Matrix<1, 3> normalizedAxis{};
|
||||
axis.Normalize(normalizedAxis);
|
||||
return Quaternion{
|
||||
static_cast<float>(cos(halfAngle)),
|
||||
normalizedAxis.Get(0, 0) * sinHalfAngle,
|
||||
normalizedAxis.Get(0, 1) * sinHalfAngle,
|
||||
normalizedAxis.Get(0, 2) * sinHalfAngle};
|
||||
Quaternion Quaternion::FromAngleAndAxis(float angle, const Matrix<1, 3> &axis) {
|
||||
const float halfAngle = angle / 2;
|
||||
const float sinHalfAngle = sin(halfAngle);
|
||||
Matrix<1, 3> normalizedAxis{};
|
||||
normalizedAxis = axis.EuclideanNorm();
|
||||
return Quaternion{static_cast<float>(cos(halfAngle)),
|
||||
normalizedAxis.Get(0, 0) * sinHalfAngle,
|
||||
normalizedAxis.Get(0, 1) * sinHalfAngle,
|
||||
normalizedAxis.Get(0, 2) * sinHalfAngle};
|
||||
}
|
||||
|
||||
float Quaternion::operator[](uint8_t index) const
|
||||
{
|
||||
if (index < 4)
|
||||
{
|
||||
return this->matrix[index];
|
||||
}
|
||||
float Quaternion::operator[](uint8_t index) const {
|
||||
if (index < 4) {
|
||||
return this->matrix[index];
|
||||
}
|
||||
|
||||
// index out of bounds
|
||||
return 1e+6;
|
||||
// index out of bounds
|
||||
return 1e+6;
|
||||
}
|
||||
|
||||
void Quaternion::operator=(const Quaternion &other)
|
||||
{
|
||||
memcpy(&(this->matrix), &(other.matrix), 4 * sizeof(float));
|
||||
void Quaternion::operator=(const Quaternion &other) {
|
||||
memcpy(&(this->matrix), &(other.matrix), 4 * sizeof(float));
|
||||
}
|
||||
|
||||
Quaternion Quaternion::operator*(const Quaternion &other) const
|
||||
{
|
||||
Quaternion result{};
|
||||
this->Q_Mult(other, result);
|
||||
return result;
|
||||
Quaternion Quaternion::operator*(const Quaternion &other) const {
|
||||
Quaternion result{};
|
||||
this->Q_Mult(other, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
Quaternion Quaternion::operator*(float scalar) const
|
||||
{
|
||||
return Quaternion{this->w * scalar, this->v1 * scalar, this->v2 * scalar, this->v3 * scalar};
|
||||
Quaternion Quaternion::operator*(float scalar) const {
|
||||
return Quaternion{this->w * scalar, this->v1 * scalar, this->v2 * scalar,
|
||||
this->v3 * scalar};
|
||||
}
|
||||
|
||||
Quaternion Quaternion::operator+(const Quaternion &other) const
|
||||
{
|
||||
return Quaternion{this->w + other.w, this->v1 + other.v1, this->v2 + other.v2, this->v3 + other.v3};
|
||||
Quaternion Quaternion::operator+(const Quaternion &other) const {
|
||||
return Quaternion{this->w + other.w, this->v1 + other.v1, this->v2 + other.v2,
|
||||
this->v3 + other.v3};
|
||||
}
|
||||
|
||||
Quaternion &
|
||||
Quaternion::Q_Mult(const Quaternion &other, Quaternion &buffer) const
|
||||
{
|
||||
Quaternion &Quaternion::Q_Mult(const Quaternion &other,
|
||||
Quaternion &buffer) const {
|
||||
|
||||
// eq. 6
|
||||
buffer.w = (other.w * this->w - other.v1 * this->v1 - other.v2 * this->v2 - other.v3 * this->v3);
|
||||
buffer.v1 = (other.w * this->v1 + other.v1 * this->w - other.v2 * this->v3 + other.v3 * this->v2);
|
||||
buffer.v2 = (other.w * this->v2 + other.v1 * this->v3 + other.v2 * this->w - other.v3 * this->v1);
|
||||
buffer.v3 = (other.w * this->v3 - other.v1 * this->v2 + other.v2 * this->v1 + other.v3 * this->w);
|
||||
return buffer;
|
||||
// eq. 6
|
||||
buffer.w = (other.w * this->w - other.v1 * this->v1 - other.v2 * this->v2 -
|
||||
other.v3 * this->v3);
|
||||
buffer.v1 = (other.w * this->v1 + other.v1 * this->w - other.v2 * this->v3 +
|
||||
other.v3 * this->v2);
|
||||
buffer.v2 = (other.w * this->v2 + other.v1 * this->v3 + other.v2 * this->w -
|
||||
other.v3 * this->v1);
|
||||
buffer.v3 = (other.w * this->v3 - other.v1 * this->v2 + other.v2 * this->v1 +
|
||||
other.v3 * this->w);
|
||||
return buffer;
|
||||
}
|
||||
|
||||
Quaternion &Quaternion::Rotate(Quaternion &other, Quaternion &buffer) const
|
||||
{
|
||||
Quaternion prime{this->w, -this->v1, -this->v2, -this->v3};
|
||||
buffer.v1 = other.v1;
|
||||
buffer.v2 = other.v2;
|
||||
buffer.v3 = other.v3;
|
||||
buffer.w = 0;
|
||||
Quaternion &Quaternion::Rotate(Quaternion &other, Quaternion &buffer) const {
|
||||
Quaternion prime{this->w, -this->v1, -this->v2, -this->v3};
|
||||
buffer.v1 = other.v1;
|
||||
buffer.v2 = other.v2;
|
||||
buffer.v3 = other.v3;
|
||||
buffer.w = 0;
|
||||
|
||||
Quaternion temp{};
|
||||
this->Q_Mult(buffer, temp);
|
||||
temp.Q_Mult(prime, buffer);
|
||||
return buffer;
|
||||
Quaternion temp{};
|
||||
this->Q_Mult(buffer, temp);
|
||||
temp.Q_Mult(prime, buffer);
|
||||
return buffer;
|
||||
}
|
||||
|
||||
void Quaternion::Normalize()
|
||||
{
|
||||
float magnitude = sqrt(this->v1 * this->v1 + this->v2 * this->v2 + this->v3 * this->v3 + this->w * this->w);
|
||||
if (magnitude == 0)
|
||||
{
|
||||
return;
|
||||
}
|
||||
this->v1 /= magnitude;
|
||||
this->v2 /= magnitude;
|
||||
this->v3 /= magnitude;
|
||||
this->w /= magnitude;
|
||||
void Quaternion::Normalize() {
|
||||
float magnitude = sqrt(this->v1 * this->v1 + this->v2 * this->v2 +
|
||||
this->v3 * this->v3 + this->w * this->w);
|
||||
if (magnitude == 0) {
|
||||
return;
|
||||
}
|
||||
this->v1 /= magnitude;
|
||||
this->v2 /= magnitude;
|
||||
this->v3 /= magnitude;
|
||||
this->w /= magnitude;
|
||||
}
|
||||
|
||||
Matrix<3, 3> Quaternion::ToRotationMatrix() const
|
||||
{
|
||||
float xx = this->v1 * this->v1;
|
||||
float yy = this->v2 * this->v2;
|
||||
float zz = this->v3 * this->v3;
|
||||
Matrix<3, 3> rotationMatrix{
|
||||
1 - 2 * (yy - zz), 2 * (this->v1 * this->v2 - this->v3 * this->w), 2 * (this->v1 * this->v3 + this->v2 * this->w),
|
||||
2 * (this->v1 * this->v2 + this->v3 * this->w), 1 - 2 * (xx - zz), 2 * (this->v2 * this->v3 - this->v1 * this->w),
|
||||
2 * (this->v1 * this->v3 - this->v2 * this->w), 2 * (this->v2 * this->v3 + this->v1 * this->w), 1 - 2 * (xx - yy)};
|
||||
return rotationMatrix;
|
||||
Matrix<3, 3> Quaternion::ToRotationMatrix() const {
|
||||
float xx = this->v1 * this->v1;
|
||||
float yy = this->v2 * this->v2;
|
||||
float zz = this->v3 * this->v3;
|
||||
Matrix<3, 3> rotationMatrix{1 - 2 * (yy - zz),
|
||||
2 * (this->v1 * this->v2 - this->v3 * this->w),
|
||||
2 * (this->v1 * this->v3 + this->v2 * this->w),
|
||||
2 * (this->v1 * this->v2 + this->v3 * this->w),
|
||||
1 - 2 * (xx - zz),
|
||||
2 * (this->v2 * this->v3 - this->v1 * this->w),
|
||||
2 * (this->v1 * this->v3 - this->v2 * this->w),
|
||||
2 * (this->v2 * this->v3 + this->v1 * this->w),
|
||||
1 - 2 * (xx - yy)};
|
||||
return rotationMatrix;
|
||||
};
|
||||
|
||||
Matrix<3, 1> Quaternion::ToEulerAngle() const
|
||||
{
|
||||
float sqv1 = this->v1 * this->v1;
|
||||
float sqv2 = this->v2 * this->v2;
|
||||
float sqv3 = this->v3 * this->v3;
|
||||
float sqw = this->w * this->w;
|
||||
Matrix<3, 1> Quaternion::ToEulerAngle() const {
|
||||
float sqv1 = this->v1 * this->v1;
|
||||
float sqv2 = this->v2 * this->v2;
|
||||
float sqv3 = this->v3 * this->v3;
|
||||
float sqw = this->w * this->w;
|
||||
|
||||
Matrix<3, 1> eulerAngle;
|
||||
{
|
||||
atan2(2.0 * (this->v1 * this->v2 + this->v3 * this->w), (sqv1 - sqv2 - sqv3 + sqw));
|
||||
asin(-2.0 * (this->v1 * this->v3 - this->v2 * this->w) / (sqv1 + sqv2 + sqv3 + sqw));
|
||||
atan2(2.0 * (this->v2 * this->v3 + this->v1 * this->w), (-sqv1 - sqv2 + sqv3 + sqw));
|
||||
};
|
||||
return eulerAngle;
|
||||
Matrix<3, 1> eulerAngle;
|
||||
{
|
||||
atan2(2.0 * (this->v1 * this->v2 + this->v3 * this->w),
|
||||
(sqv1 - sqv2 - sqv3 + sqw));
|
||||
asin(-2.0 * (this->v1 * this->v3 - this->v2 * this->w) /
|
||||
(sqv1 + sqv2 + sqv3 + sqw));
|
||||
atan2(2.0 * (this->v2 * this->v3 + this->v1 * this->w),
|
||||
(-sqv1 - sqv2 + sqv3 + sqw));
|
||||
};
|
||||
return eulerAngle;
|
||||
}
|
||||
@@ -282,26 +282,6 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
|
||||
REQUIRE(mat5.Get(2, 1) == 6);
|
||||
}
|
||||
|
||||
SECTION("Normalize") {
|
||||
mat1.Normalize(mat3);
|
||||
|
||||
float sqrt_30{static_cast<float>(sqrt(30.0f))};
|
||||
|
||||
REQUIRE(mat3.Get(0, 0) == 1 / sqrt_30);
|
||||
REQUIRE(mat3.Get(0, 1) == 2 / sqrt_30);
|
||||
REQUIRE(mat3.Get(1, 0) == 3 / sqrt_30);
|
||||
REQUIRE(mat3.Get(1, 1) == 4 / sqrt_30);
|
||||
|
||||
Matrix<2, 1> mat4{-0.878877044, 2.92092276};
|
||||
Matrix<2, 1> mat5{};
|
||||
mat4.Normalize(mat5);
|
||||
|
||||
REQUIRE_THAT(mat5.Get(0, 0),
|
||||
Catch::Matchers::WithinRel(-0.288129855179f, 1e-6f));
|
||||
REQUIRE_THAT(mat5.Get(1, 0),
|
||||
Catch::Matchers::WithinRel(0.957591346325f, 1e-6f));
|
||||
}
|
||||
|
||||
SECTION("GET ROW") {
|
||||
Matrix<1, 2> mat1Rows{};
|
||||
mat1.GetRow(0, mat1Rows);
|
||||
@@ -383,6 +363,63 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
|
||||
}
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
float matrixSum(const Matrix<rows, columns> &matrix) {
|
||||
float sum = 0;
|
||||
for (uint32_t i = 0; i < rows * columns; i++) {
|
||||
float number = matrix.ToArray()[i];
|
||||
sum += number * number;
|
||||
}
|
||||
return std::sqrt(sum);
|
||||
}
|
||||
|
||||
TEST_CASE("Normalization", "Matrix") {
|
||||
|
||||
SECTION("2x2 Normalize") {
|
||||
Matrix<2, 2> mat1{1, 2, 3, 4};
|
||||
Matrix<2, 2> mat2{};
|
||||
|
||||
mat2 = mat1.EuclideanNorm();
|
||||
|
||||
float sqrt_30{static_cast<float>(sqrt(30.0f))};
|
||||
|
||||
REQUIRE(mat2.Get(0, 0) == 1 / sqrt_30);
|
||||
REQUIRE(mat2.Get(0, 1) == 2 / sqrt_30);
|
||||
REQUIRE(mat2.Get(1, 0) == 3 / sqrt_30);
|
||||
REQUIRE(mat2.Get(1, 1) == 4 / sqrt_30);
|
||||
|
||||
REQUIRE_THAT(matrixSum(mat2), Catch::Matchers::WithinRel(1.0f, 1e-6f));
|
||||
}
|
||||
|
||||
SECTION("2x1 (Vector) Normalize") {
|
||||
Matrix<2, 1> mat1{-0.878877044, 2.92092276};
|
||||
Matrix<2, 1> mat2{};
|
||||
mat2 = mat1.EuclideanNorm();
|
||||
|
||||
REQUIRE_THAT(mat2.Get(0, 0),
|
||||
Catch::Matchers::WithinRel(-0.288129855179f, 1e-6f));
|
||||
REQUIRE_THAT(mat2.Get(1, 0),
|
||||
Catch::Matchers::WithinRel(0.957591346325f, 1e-6f));
|
||||
|
||||
float sum = matrixSum(mat2);
|
||||
REQUIRE_THAT(sum, Catch::Matchers::WithinRel(1.0f, 1e-6f));
|
||||
}
|
||||
|
||||
SECTION("Normalized vectors sum to 1") {
|
||||
Matrix<9, 1> mat1{1, 2, 3, 4, 5, 6, 7, 8, 9};
|
||||
Matrix<9, 1> mat2;
|
||||
mat2 = mat1.EuclideanNorm();
|
||||
float sum = matrixSum(mat2);
|
||||
REQUIRE_THAT(sum, Catch::Matchers::WithinRel(1.0f, 1e-6f));
|
||||
|
||||
Matrix<2, 3> mat3{1, 2, 3, 4, 5, 6};
|
||||
Matrix<2, 3> mat4{};
|
||||
mat4 = mat3.EuclideanNorm();
|
||||
sum = matrixSum(mat4);
|
||||
REQUIRE_THAT(sum, Catch::Matchers::WithinRel(1.0f, 1e-6f));
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("QR Decompositions", "Matrix") {
|
||||
SECTION("2x2 QRDecomposition") {
|
||||
Matrix<2, 2> A{1.0f, 2.0f, 3.0f, 4.0f};
|
||||
@@ -434,6 +471,13 @@ TEST_CASE("QR Decompositions", "Matrix") {
|
||||
Matrix<3, 3> Q{}, R{};
|
||||
A.QRDecomposition(Q, R);
|
||||
|
||||
std::string strBuf1 = "";
|
||||
Q.ToString(strBuf1);
|
||||
std::cout << "Q:\n" << strBuf1 << std::endl;
|
||||
strBuf1 = "";
|
||||
R.ToString(strBuf1);
|
||||
std::cout << "R:\n" << strBuf1 << std::endl;
|
||||
|
||||
// Check that Q * R ≈ A
|
||||
Matrix<3, 3> QR{};
|
||||
QR = Q * R;
|
||||
@@ -463,13 +507,6 @@ TEST_CASE("QR Decompositions", "Matrix") {
|
||||
}
|
||||
}
|
||||
|
||||
std::string strBuf1 = "";
|
||||
Q.ToString(strBuf1);
|
||||
std::cout << "Q:\n" << strBuf1 << std::endl;
|
||||
strBuf1 = "";
|
||||
R.ToString(strBuf1);
|
||||
std::cout << "R:\n" << strBuf1 << std::endl;
|
||||
|
||||
// check that all Q values are correct
|
||||
REQUIRE_THAT(Q[0][0], Catch::Matchers::WithinRel(0.1231f, 1e-4f));
|
||||
REQUIRE_THAT(Q[0][1], Catch::Matchers::WithinRel(0.904534f, 1e-4f));
|
||||
|
||||
@@ -99,7 +99,7 @@ TEST_CASE("Timing Tests", "Matrix") {
|
||||
|
||||
SECTION("Normalize") {
|
||||
for (uint32_t i{0}; i < 10000; i++) {
|
||||
mat1.Normalize(mat3);
|
||||
mat3 = mat1.EuclideanNorm();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user