Fixed matrix inversion
This commit is contained in:
55
Matrix.hpp
55
Matrix.hpp
@@ -74,12 +74,6 @@ public:
|
||||
Matrix<rows, columns> &Mult(float scalar,
|
||||
Matrix<rows, columns> &result) const;
|
||||
|
||||
/**
|
||||
* @brief Square this matrix
|
||||
* @param result A buffer to store the result into
|
||||
*/
|
||||
Matrix<rows, columns> &Square(Matrix<rows, rows> &result) const;
|
||||
|
||||
/**
|
||||
* @brief Element-wise multiply the two matrices
|
||||
* @param other the other matrix to multiply into this one
|
||||
@@ -108,6 +102,8 @@ public:
|
||||
*/
|
||||
float Det() const;
|
||||
|
||||
Matrix<rows, columns> &MatrixOfMinors(Matrix<rows, columns> &result) const;
|
||||
|
||||
/**
|
||||
* @brief Invert this matrix
|
||||
* @param result A buffer to store the result into
|
||||
@@ -196,8 +192,6 @@ private:
|
||||
static float dotProduct(const Matrix<vector_size, 1> &vec1,
|
||||
const Matrix<vector_size, 1> &vec2);
|
||||
|
||||
Matrix<rows, columns> &matrixOfMinors(Matrix<rows, columns> &result) const;
|
||||
|
||||
Matrix<rows, columns> &adjugate(Matrix<rows, columns> &result) const;
|
||||
|
||||
void setMatrixToArray(const std::array<float, rows * columns> &array);
|
||||
@@ -290,16 +284,18 @@ template <uint8_t other_columns>
|
||||
Matrix<rows, columns> &
|
||||
Matrix<rows, columns>::Mult(const Matrix<columns, other_columns> &other,
|
||||
Matrix<rows, other_columns> &result) const {
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
||||
// get our row
|
||||
// allocate some buffers for all of our dot products
|
||||
Matrix<1, columns> this_row;
|
||||
this->GetRow(row_idx, this_row);
|
||||
// get the other matrices column
|
||||
Matrix<rows, 1> other_column;
|
||||
Matrix<1, rows> other_column_t;
|
||||
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
||||
// get our row
|
||||
this->GetRow(row_idx, this_row);
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
||||
// get the other matrix'ss column
|
||||
other.GetColumn(column_idx, other_column);
|
||||
// transpose the other matrix's column
|
||||
Matrix<1, rows> other_column_t;
|
||||
other_column.Transpose(other_column_t);
|
||||
|
||||
// the result's index is equal to the dot product of these two vectors
|
||||
@@ -334,7 +330,7 @@ Matrix<rows, columns>::Invert(Matrix<rows, columns> &result) const {
|
||||
// unfortunately we can't calculate this at compile time so we'll just reurn
|
||||
// zeros
|
||||
float determinant{this->Det()};
|
||||
if (determinant < 0) {
|
||||
if (determinant == 0) {
|
||||
// you can't invert a matrix with a negative determinant
|
||||
result.Fill(0);
|
||||
return result;
|
||||
@@ -346,13 +342,14 @@ Matrix<rows, columns>::Invert(Matrix<rows, columns> &result) const {
|
||||
|
||||
// calculate the matrix of minors
|
||||
Matrix<rows, columns> minors{};
|
||||
this->matrixOfMinors(minors);
|
||||
this->MatrixOfMinors(minors);
|
||||
|
||||
// now adjugate the matrix and save it in our output
|
||||
minors.adjugate(result);
|
||||
|
||||
// scale the result by 1/determinant and we have our answer
|
||||
result.Mult(1 / determinant, result);
|
||||
result = result * (1 / determinant);
|
||||
// result.Mult(1 / determinant, result);
|
||||
|
||||
return result;
|
||||
}
|
||||
@@ -369,20 +366,10 @@ Matrix<rows, columns>::Transpose(Matrix<columns, rows> &result) const {
|
||||
return result;
|
||||
}
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns> &
|
||||
Matrix<rows, columns>::Square(Matrix<rows, rows> &result) const {
|
||||
// TODO: Because template requirements are checked before static_assert, this
|
||||
// never throws an error and fails at the Mult call instead.
|
||||
static_assert(rows == columns, "You can't square a non-square matrix.");
|
||||
|
||||
this->Mult(*this, result);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// explicitly define the determinant for a 2x2 matrix because it is definitely
|
||||
// the fastest way to calculate a 2x2 matrix determinant
|
||||
template <> float Matrix<0, 0>::Det() const { return 1e+6; }
|
||||
template <> float Matrix<1, 1>::Det() const { return this->matrix[0][0]; }
|
||||
template <> float Matrix<2, 2>::Det() const {
|
||||
return this->matrix[0][0] * this->matrix[1][1] -
|
||||
this->matrix[0][1] * this->matrix[1][0];
|
||||
@@ -392,6 +379,7 @@ template <uint8_t rows, uint8_t columns>
|
||||
float Matrix<rows, columns>::Det() const {
|
||||
static_assert(rows == columns,
|
||||
"You can't take the determinant of a non-square matrix.");
|
||||
|
||||
Matrix<rows - 1, columns - 1> MinorMatrix{};
|
||||
float determinant{0};
|
||||
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
|
||||
@@ -436,7 +424,8 @@ template <uint8_t rows, uint8_t columns>
|
||||
float Matrix<rows, columns>::Get(uint8_t row_index,
|
||||
uint8_t column_index) const {
|
||||
if (row_index > rows - 1 || column_index > columns - 1) {
|
||||
return 0; // TODO: We should throw something here instead of failing quietly
|
||||
return 1e+10; // TODO: We should throw something here instead of failing
|
||||
// quietly
|
||||
}
|
||||
return this->matrix[row_index][column_index];
|
||||
}
|
||||
@@ -563,7 +552,7 @@ void Matrix<rows, columns>::Fill(float value) {
|
||||
|
||||
template <uint8_t rows, uint8_t columns>
|
||||
Matrix<rows, columns> &
|
||||
Matrix<rows, columns>::matrixOfMinors(Matrix<rows, columns> &result) const {
|
||||
Matrix<rows, columns>::MatrixOfMinors(Matrix<rows, columns> &result) const {
|
||||
Matrix<rows - 1, columns - 1> MinorMatrix{};
|
||||
|
||||
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
|
||||
@@ -606,7 +595,7 @@ Matrix<rows, columns>::adjugate(Matrix<rows, columns> &result) const {
|
||||
for (uint8_t column_iter{0}; column_iter < columns; column_iter++) {
|
||||
float sign = ((row_iter + 1) % 2) == 0 ? -1 : 1;
|
||||
sign *= ((column_iter + 1) % 2) == 0 ? -1 : 1;
|
||||
result[row_iter][column_iter] = this->Get(row_iter, column_iter) * sign;
|
||||
result[column_iter][row_iter] = this->Get(row_iter, column_iter) * sign;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -626,7 +615,7 @@ Matrix<rows, columns>::Normalize(Matrix<rows, columns> &result) const {
|
||||
|
||||
if (sum == 0) {
|
||||
// this wouldn't do anything anyways
|
||||
result.Fill(0);
|
||||
result.Fill(1e+6);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
@@ -116,15 +116,6 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
|
||||
REQUIRE(mat3.Get(1, 1) == 8);
|
||||
}
|
||||
|
||||
SECTION("Squaring") {
|
||||
mat1.Square(mat3);
|
||||
|
||||
REQUIRE(mat3.Get(0, 0) == 7);
|
||||
REQUIRE(mat3.Get(0, 1) == 10);
|
||||
REQUIRE(mat3.Get(1, 0) == 15);
|
||||
REQUIRE(mat3.Get(1, 1) == 22);
|
||||
}
|
||||
|
||||
SECTION("Element Multiply") {
|
||||
mat1.ElementMultiply(mat2, mat3);
|
||||
|
||||
@@ -199,12 +190,34 @@ TEST_CASE("Elementary Matrix Operations", "Matrix") {
|
||||
REQUIRE_THAT(det5, Catch::Matchers::WithinRel(6.0F, 1e-6f));
|
||||
}
|
||||
|
||||
SECTION("Matrix of Minors") {
|
||||
mat1.MatrixOfMinors(mat3);
|
||||
REQUIRE_THAT(mat3.Get(0, 0), Catch::Matchers::WithinRel(4.0F, 1e-6f));
|
||||
REQUIRE_THAT(mat3.Get(0, 1), Catch::Matchers::WithinRel(3.0F, 1e-6f));
|
||||
REQUIRE_THAT(mat3.Get(1, 0), Catch::Matchers::WithinRel(2.0F, 1e-6f));
|
||||
REQUIRE_THAT(mat3.Get(1, 1), Catch::Matchers::WithinRel(1.0F, 1e-6f));
|
||||
|
||||
std::array<float, 9> arr4{1, 2, 3, 4, 5, 6, 7, 8, 9};
|
||||
Matrix<3, 3> mat4{arr4};
|
||||
Matrix<3, 3> mat5{0};
|
||||
mat4.MatrixOfMinors(mat5);
|
||||
REQUIRE_THAT(mat5.Get(0, 0), Catch::Matchers::WithinRel(-3.0F, 1e-6f));
|
||||
REQUIRE_THAT(mat5.Get(0, 1), Catch::Matchers::WithinRel(-6.0F, 1e-6f));
|
||||
REQUIRE_THAT(mat5.Get(0, 2), Catch::Matchers::WithinRel(-3.0F, 1e-6f));
|
||||
REQUIRE_THAT(mat5.Get(1, 0), Catch::Matchers::WithinRel(-6.0F, 1e-6f));
|
||||
REQUIRE_THAT(mat5.Get(1, 1), Catch::Matchers::WithinRel(-12.0F, 1e-6f));
|
||||
REQUIRE_THAT(mat5.Get(1, 2), Catch::Matchers::WithinRel(-6.0F, 1e-6f));
|
||||
REQUIRE_THAT(mat5.Get(2, 0), Catch::Matchers::WithinRel(-3.0F, 1e-6f));
|
||||
REQUIRE_THAT(mat5.Get(2, 1), Catch::Matchers::WithinRel(-6.0F, 1e-6f));
|
||||
REQUIRE_THAT(mat5.Get(2, 2), Catch::Matchers::WithinRel(-3.0F, 1e-6f));
|
||||
}
|
||||
|
||||
SECTION("Invert") {
|
||||
// mat1.Invert(mat3);
|
||||
// REQUIRE_THAT(mat3.Get(0, 0), Catch::Matchers::WithinRel(-2.0F, 1e-6f));
|
||||
// REQUIRE_THAT(mat3.Get(0, 0), Catch::Matchers::WithinRel(1.0F, 1e-6f));
|
||||
// REQUIRE_THAT(mat3.Get(0, 0), Catch::Matchers::WithinRel(1.5F, 1e-6f));
|
||||
// REQUIRE_THAT(mat3.Get(0, 0), Catch::Matchers::WithinRel(-0.5F, 1e-6f));
|
||||
mat1.Invert(mat3);
|
||||
REQUIRE_THAT(mat3.Get(0, 0), Catch::Matchers::WithinRel(-2.0F, 1e-6f));
|
||||
REQUIRE_THAT(mat3.Get(0, 1), Catch::Matchers::WithinRel(1.0F, 1e-6f));
|
||||
REQUIRE_THAT(mat3.Get(1, 0), Catch::Matchers::WithinRel(1.5F, 1e-6f));
|
||||
REQUIRE_THAT(mat3.Get(1, 1), Catch::Matchers::WithinRel(-0.5F, 1e-6f));
|
||||
};
|
||||
|
||||
SECTION("Transpose") {
|
||||
|
||||
Reference in New Issue
Block a user