Got the matrix library compiling in the tests

This commit is contained in:
Quinn Henthorne
2024-12-10 16:56:57 -05:00
parent ebdf279a5e
commit 1ef741ea93
6 changed files with 403 additions and 26277 deletions

View File

@@ -29,6 +29,7 @@ set_target_properties(Matrix
LINKER_LANGUAGE CXX LINKER_LANGUAGE CXX
) )
target_include_directories(Matrix PUBLIC target_include_directories(Matrix
include PUBLIC
.
) )

View File

@@ -1,452 +1,486 @@
#pragma once #pragma once
#include <cstdint>
#include <array> #include <array>
#include <type_traits> #include <cmath>
#include <cstdint>
#include <cstdlib> #include <cstdlib>
#include <type_traits>
template <uint8_t rows, uint8_t columns>
class Matrix{
public:
Matrix();
Matrix(const std::array<float, columns> & array); template <uint8_t rows, uint8_t columns> class Matrix {
public:
Matrix();
/** Matrix(const std::array<float, columns> &array);
* @brief Element-wise matrix addition
* @param other the other matrix to add to this one
* @param result A buffer to store the result into
* @note there is no problem if result == this
*/
void Add(const Matrix<rows, columns> & other, Matrix<rows, columns> & result) const;
/**
* @brief Element-wise subtract matrix
* @param other the other matrix to subtract from this one
* @param result A buffer to store the result into
* @note there is no problem if result == this
*/
void Subtract(const Matrix<rows, columns> & other, Matrix<rows, columns> & result) const;
/** /**
* @brief Matrix multiply the two matrices * @brief Element-wise matrix addition
* @param other the other matrix to multiply into this one * @param other the other matrix to add to this one
* @param result A buffer to store the result into * @param result A buffer to store the result into
*/ * @note there is no problem if result == this
template <uint8_t other_columns> */
void Multiply(const Matrix<rows, columns> & other, Matrix<columns, other_columns> & result) const; void Add(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const;
/**
* @brief Multiply the matrix by a scalar
* @param scalar the the scalar to multiply by
* @param result A buffer to store the result into
* @note there is no problem if result == this
*/
void Multiply(float scalar, Matrix<rows, columns> & result) const;
/**
* @brief Invert this matrix
* @param result A buffer to store the result into
* @warning this is super slow! Only call it if you absolutely have to!!!
*/
void Invert(Matrix<rows, columns> & result) const;
/** /**
* @brief Transpose this matrix * @brief Element-wise subtract matrix
* @param result A buffer to store the result into * @param other the other matrix to subtract from this one
*/ * @param result A buffer to store the result into
void Transpose(Matrix<columns, rows> & result) const; * @note there is no problem if result == this
*/
void Subtract(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const;
/** /**
* @brief Square this matrix * @brief Matrix multiply the two matrices
* @param result A buffer to store the result into * @param other the other matrix to multiply into this one
*/ * @param result A buffer to store the result into
void Square(Matrix<rows, columns> & result) const; */
template <uint8_t other_columns>
void Multiply(const Matrix<rows, columns> &other,
Matrix<columns, other_columns> &result) const;
/** /**
* @return Get the determinant of the matrix * @brief Multiply the matrix by a scalar
*/ * @param scalar the the scalar to multiply by
float Det() const; * @param result A buffer to store the result into
* @note there is no problem if result == this
*/
void Multiply(float scalar, Matrix<rows, columns> &result) const;
/** /**
* @brief Calculate the eigenvalues for a square matrix * @brief Invert this matrix
* @param result a buffer to store the result into * @param result A buffer to store the result into
*/ * @warning this is super slow! Only call it if you absolutely have to!!!
void EigenValues(Matrix<rows, 1> & result) const; */
void Invert(Matrix<rows, columns> &result) const;
/** /**
* @brief Element-wise multiply the two matrices * @brief Transpose this matrix
* @param other the other matrix to multiply into this one * @param result A buffer to store the result into
* @param result A buffer to store the result into */
* @note there is no problem if result == this void Transpose(Matrix<columns, rows> &result) const;
*/
void ElementMultiply(const Matrix<rows, columns> & other, Matrix<rows, columns> & result) const;
/** /**
* @brief Element-wise divide the two matrices * @brief Square this matrix
* @param other the other matrix to multiply into this one * @param result A buffer to store the result into
* @param result A buffer to store the result into */
* @note there is no problem if result == this void Square(Matrix<rows, columns> &result) const;
*/
void ElementDivide(const Matrix<rows, columns> & other, Matrix<rows, columns> & result) const;
/**
* @brief Get an element from the matrix
* @param row the row index of the element
* @param column the column index of the element
* @return The value of the element you want to get
*/
float & Get(uint8_t row_index, uint8_t column_index) const;
/** /**
* @brief get the specified row of the matrix returned as a reference to the internal array * @return Get the determinant of the matrix
*/ */
std::array<float, columns> & operator[](uint8_t row_index) const; float Det() const;
void operator=(Matrix<rows, columns> & other); /**
* @brief Calculate the eigenvalues for a square matrix
* @param result a buffer to store the result into
*/
void EigenValues(Matrix<rows, 1> &result) const;
/** /**
* @brief Get a row from the matrix * @brief Element-wise multiply the two matrices
* @param row_index the row index to get * @param other the other matrix to multiply into this one
* @param row a buffer to write the row into * @param result A buffer to store the result into
*/ * @note there is no problem if result == this
void GetRow(uint8_t row_index, Matrix<1, columns> & row) const; */
void ElementMultiply(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const;
/** /**
* @brief Get a row from the matrix * @brief Element-wise divide the two matrices
* @param column_index the row index to get * @param other the other matrix to multiply into this one
* @param column a buffer to write the row into * @param result A buffer to store the result into
*/ * @note there is no problem if result == this
void GetColumn(uint8_t column_index, Matrix<rows, 1> & column) const; */
void ElementDivide(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const;
/** /**
* @brief Get the number of rows in this matrix * @brief Get an element from the matrix
*/ * @param row the row index of the element
constexpr uint8_t GetRowSize(){return rows;} * @param column the column index of the element
* @return The value of the element you want to get
*/
float &Get(uint8_t row_index, uint8_t column_index) const;
/** /**
* @brief Get the number of columns in this matrix * @brief get the specified row of the matrix returned as a reference to the
*/ * internal array
constexpr uint8_t GetColumnSize(){return columns;} */
std::array<float, columns> &operator[](uint8_t row_index) const;
private: void operator=(Matrix<rows, columns> &other);
/**
* @brief take the dot product of the two vectors
*/
template <uint8_t vector_size>
float dotProduct(const Matrix<vector_size, 1> & vec1, const Matrix<vector_size, 1> & vec2);
/**
* @brief Set all elements in this matrix to zero
*/
void zeroMatrix();
void matrixOfMinors(Matrix<rows, columns> & result) const; /**
* @brief Get a row from the matrix
* @param row_index the row index to get
* @param row a buffer to write the row into
*/
void GetRow(uint8_t row_index, Matrix<1, columns> &row) const;
void minorMatrix(Matrix<rows-1, columns-1> & result, uint8_t row_idx, uint8_t column_idx) const; /**
* @brief Get a row from the matrix
* @param column_index the row index to get
* @param column a buffer to write the row into
*/
void GetColumn(uint8_t column_index, Matrix<rows, 1> &column) const;
void adjugate(Matrix<rows, columns> & result) const; /**
* @brief Get the number of rows in this matrix
*/
constexpr uint8_t GetRowSize() { return rows; }
/** /**
* @brief reduce the matrix so the sum of its elements equal 1 * @brief Get the number of columns in this matrix
* @param result a buffer to store the result into */
*/ constexpr uint8_t GetColumnSize() { return columns; }
void normalize(Matrix<rows, columns> & result) const;
constexpr bool isSquare(){return rows==columns;} private:
std::array<std::array<float, columns>, rows> matrix; /**
* @brief take the dot product of the two vectors
*/
template <uint8_t vector_size>
float dotProduct(const Matrix<vector_size, 1> &vec1,
const Matrix<vector_size, 1> &vec2);
/**
* @brief Set all elements in this matrix to zero
*/
void zeroMatrix();
void matrixOfMinors(Matrix<rows, columns> &result) const;
void minorMatrix(Matrix<rows - 1, columns - 1> &result, uint8_t row_idx,
uint8_t column_idx) const;
void adjugate(Matrix<rows, columns> &result) const;
/**
* @brief reduce the matrix so the sum of its elements equal 1
* @param result a buffer to store the result into
*/
void normalize(Matrix<rows, columns> &result) const;
constexpr bool isSquare() { return rows == columns; }
std::array<std::array<float, columns>, rows> matrix;
}; };
template <uint8_t rows, uint8_t columns> template <uint8_t rows, uint8_t columns> Matrix<rows, columns>::Matrix() {
Matrix<rows, columns>::Matrix(){ this->zeroMatrix();
this->zeroMatrix();
} }
template <uint8_t rows, uint8_t columns> template <uint8_t rows, uint8_t columns>
Matrix<rows, columns>::Matrix(const std::array<float, columns> & array){ Matrix<rows, columns>::Matrix(const std::array<float, columns> &array) {
for(uint8_t row_idx{0}; row_idx < rows; row_idx++){ for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for(uint8_t column_idx{0}; column_idx < columns; column_idx++){ for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
uint16_t i = static_cast<uint16_t>(row_idx) + static_cast<uint16_t>(column_idx); uint16_t i =
if(i < array.size()){ static_cast<uint16_t>(row_idx) + static_cast<uint16_t>(column_idx);
this->Get(row_idx, column_idx) = array[i]; if (i < array.size()) {
} this->Get(row_idx, column_idx) = array[i];
else{ } else {
this->Get(row_idx, column_idx) = 0; this->Get(row_idx, column_idx) = 0;
} }
}
} }
}
} }
template <uint8_t rows, uint8_t columns> template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::Add(const Matrix<rows, columns> & other, Matrix<rows, columns> & result) const{ void Matrix<rows, columns>::Add(const Matrix<rows, columns> &other,
for(uint8_t row{0}; row < rows; row++){ Matrix<rows, columns> &result) const {
for(uint8_t column{0}; column < columns; column++){ for (uint8_t row{0}; row < rows; row++) {
result.Get(row, column) = this->Get(row, column) + other.Get(row, column); for (uint8_t column{0}; column < columns; column++) {
} result.Get(row, column) = this->Get(row, column) + other.Get(row, column);
} }
}
} }
template <uint8_t rows, uint8_t columns> template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::Subtract(const Matrix<rows, columns> & other, Matrix<rows, columns> & result) const{ void Matrix<rows, columns>::Subtract(const Matrix<rows, columns> &other,
for(uint8_t row{0}; row < rows; row++){ Matrix<rows, columns> &result) const {
for(uint8_t column{0}; column < columns; column++){ for (uint8_t row{0}; row < rows; row++) {
result.Get(row, column) = this->Get(row, column) - other.Get(row, column); for (uint8_t column{0}; column < columns; column++) {
} result.Get(row, column) = this->Get(row, column) - other.Get(row, column);
} }
}
} }
template <uint8_t rows, uint8_t columns> template <uint8_t rows, uint8_t columns>
template <uint8_t other_columns> template <uint8_t other_columns>
void Matrix<rows, columns>::Multiply(const Matrix<rows, columns> & other, Matrix<columns, other_columns> & result) const{ void Matrix<rows, columns>::Multiply(
for(uint8_t row_idx{0}; row_idx < rows; row_idx++){ const Matrix<rows, columns> &other,
for(uint8_t column_idx{0}; column_idx < columns; column_idx++){ Matrix<columns, other_columns> &result) const {
// get our row for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
Matrix<rows, 1> this_row; for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
this->GetRow(row_idx, this_row); // get our row
// get the other matrices column Matrix<rows, 1> this_row;
Matrix<1, columns> other_column; this->GetRow(row_idx, this_row);
other.GetColumn(column_idx, other_column); // get the other matrices column
// transpose the other matrix's column Matrix<1, columns> other_column;
Matrix<columns, 1> other_column_t; other.GetColumn(column_idx, other_column);
other_column.Transpose(other_column_t); // transpose the other matrix's column
Matrix<columns, 1> other_column_t;
other_column.Transpose(other_column_t);
// the result's index is equal to the dot product of these two vectors // the result's index is equal to the dot product of these two vectors
result.Get(row_idx, column_idx) = this->dotProduct(this_row, other_column_t); result.Get(row_idx, column_idx) =
} this->dotProduct(this_row, other_column_t);
} }
}
} }
template <uint8_t rows, uint8_t columns> template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::Multiply(float scalar, Matrix<rows, columns> & result) const{ void Matrix<rows, columns>::Multiply(float scalar,
for(uint8_t row_idx{0}; row_idx < rows; row_idx++){ Matrix<rows, columns> &result) const {
for(uint8_t column_idx{0}; column_idx < columns; column_idx++){ for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
result.Get(row_idx, column_idx) = this->Get(row_idx, column_idx) * scalar; for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
} result.Get(row_idx, column_idx) = this->Get(row_idx, column_idx) * scalar;
} }
}
} }
template <uint8_t rows, uint8_t columns> template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::Invert(Matrix<rows, columns> & result) const{ void Matrix<rows, columns>::Invert(Matrix<rows, columns> &result) const {
// since all matrix sizes have to be statically specified at compile time we can do this // since all matrix sizes have to be statically specified at compile time we
static_assert(rows == columns, "Your matrix isn't square and can't be inverted"); // can do this
static_assert(rows == columns,
"Your matrix isn't square and can't be inverted");
// unfortunately we can't calculate this at compile time so we'll just reurn zeros // unfortunately we can't calculate this at compile time so we'll just reurn
if(this->Det() < 0){ // zeros
// you can't invert a matrix with a negative determinant if (this->Det() < 0) {
result.zeroMatrix(); // you can't invert a matrix with a negative determinant
return; result.zeroMatrix();
return;
}
// TODO: This algorithm is really inneficient because of the matrix of minors.
// We should make a different algorithm how to calculate the inverse:
// https://www.mathsisfun.com/algebra/matrix-inverse-minors-cofactors-adjugate.html
// calculate the matrix of minors
Matrix<rows, columns> minors{};
this->matrixOfMinors(minors);
// now adjugate the matrix and save it in our output
minors.adjugate(result);
float determinant = this->Det();
// scale the result by 1/determinant and we have our answer
result.Multiply(1 / determinant);
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::Transpose(Matrix<columns, rows> &result) const {
for (uint8_t column_idx{0}; column_idx < rows; column_idx++) {
for (uint8_t row_idx{0}; row_idx < columns; row_idx++) {
result.Get(row_idx, column_idx) = this->Get(column_idx, row_idx);
}
}
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::Square(Matrix<rows, columns> &result) const {
static_assert(this->isSquare(), "You can't square an non-square matrix.");
this->Multiply(this, result);
}
template <uint8_t rows, uint8_t columns>
float Matrix<rows, columns>::Det() const {
static_assert(this->isSquare(),
"You can't take the determinant of a non-square matrix.");
Matrix<1, columns> eigenValues{};
this->EigenValues(eigenValues);
float determinant{1};
for (uint8_t i{0}; i < columns; i++) {
determinant *= eigenValues.Get(0, i);
}
return determinant;
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::EigenValues(Matrix<rows, 1> &eigenvalues) const {
static_assert(rows == columns,
"Eigenvalues can only be computed for square matrices.");
// I got this code from:
// https://www.quora.com/What-is-the-C-code-for-finding-eigenvalues
Matrix<rows, 1> v{};
Matrix<rows, 1> Av{};
Matrix<rows, 1> z{};
float d = 0.0, d_old = 0.0;
constexpr float convergence_value{1e-6};
constexpr uint16_t max_iterations{500};
// Initialize v as a random vector
for (int i = 0; i < rows; i++) {
v[0][i] = rand() / RAND_MAX;
}
// run this loop until the eigenvalues converge or we give up
for (uint16_t k{0}; k < max_iterations; k++) {
/* Multiply A by v */
for (int i = 0; i < rows; i++) {
Av[0][i] = 0.0;
for (int j = 0; j < rows; j++) {
Av[0][i] += this->Get(0, i * rows + j) * v[0][j];
}
} }
// TODO: This algorithm is really inneficient because of the matrix of minors. We should make a different algorithm // Calculate the eigenvalue and update v
// how to calculate the inverse: https://www.mathsisfun.com/algebra/matrix-inverse-minors-cofactors-adjugate.html d_old = d;
d = dot_product(v, Av, rows);
// calculate the matrix of minors for (int i = 0; i < rows; i++) {
Matrix<rows, columns> minors{}; z[0][i] = Av[0][i] - d * v[0][i];
this->matrixOfMinors(minors);
// now adjugate the matrix and save it in our output
minors.adjugate(result);
float determinant = this->Det();
// scale the result by 1/determinant and we have our answer
result.Multiply(1/determinant);
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::Transpose(Matrix<columns, rows> & result) const{
for(uint8_t column_idx{0}; column_idx < rows; column_idx++){
for(uint8_t row_idx{0}; row_idx < columns; row_idx++){
result.Get(row_idx, column_idx) = this->Get(column_idx, row_idx);
}
}
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::Square(Matrix<rows, columns> & result) const{
static_assert(this->isSquare(), "You can't square an non-square matrix.");
this->Multiply(this, result);
}
template <uint8_t rows, uint8_t columns>
float Matrix<rows, columns>::Det() const{
static_assert(this->isSquare(), "You can't take the determinant of a non-square matrix.");
Matrix<1, columns> eigenValues{};
this->EigenValues(eigenValues);
float determinant{1};
for(uint8_t i{0}; i < columns; i++){
determinant *= eigenValues.Get(0, i);
} }
return determinant; z.normalize(z);
}
template <uint8_t rows, uint8_t columns> for (int i = 0; i < rows; i++) {
void Matrix<rows, columns>::EigenValues(Matrix<rows, 1> & eigenvalues) const{ v[0][i] = z[0][i];
static_assert(rows == columns, "Eigenvalues can only be computed for square matrices.");
// I got this code from: https://www.quora.com/What-is-the-C-code-for-finding-eigenvalues
Matrix<rows, 1> v{};
Matrix<rows, 1> Av{};
Matrix<rows, 1> z{};
float d = 0.0, d_old = 0.0;
constexpr float convergence_value{1e-6};
constexpr uint16_t max_iterations{500};
// Initialize v as a random vector
for (int i = 0; i < rows; i++) {
v[0][i] = rand() / RAND_MAX;
}
// run this loop until the eigenvalues converge or we give up
for (uint16_t k{0}; k < max_iterations; k++) {
/* Multiply A by v */
for (int i = 0; i < rows; i++) {
Av[0][i] = 0.0;
for (int j = 0; j < rows; j++) {
Av[0][i] += this->Get(0, i * rows + j) * v[0][j];
}
}
// Calculate the eigenvalue and update v
d_old = d;
d = dot_product(v, Av, rows);
for (int i = 0; i < rows; i++) {
z[0][i] = Av[0][i] - d * v[0][i];
}
z.normalize(z);
for (int i = 0; i < rows; i++) {
v[0][i] = z[0][i];
}
/* Check for convergence */
if (fabs(d - d_old) < convergence_value) {
eigenvalues[0][k] = d;
k++;
d = 0.0;
for (int i = 0; i < rows; i++) {
v[0][i] = rand() / RAND_MAX;
}
}
}
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::ElementMultiply(const Matrix<rows, columns> & other, Matrix<rows, columns> & result) const{
for(uint8_t row_idx{0}; row_idx < rows; row_idx++){
for(uint8_t column_idx{0}; column_idx < columns; column_idx++){
result.Get(row_idx, column_idx) = this->Get(row_idx, column_idx) * other.Get(row_idx, column_idx);
}
} }
}
template <uint8_t rows, uint8_t columns> /* Check for convergence */
void Matrix<rows, columns>::ElementDivide(const Matrix<rows, columns> & other, Matrix<rows, columns> & result) const{ if (fabs(d - d_old) < convergence_value) {
for(uint8_t row_idx{0}; row_idx < rows; row_idx++){ eigenvalues[0][k] = d;
for(uint8_t column_idx{0}; column_idx < columns; column_idx++){ k++;
result.Get(row_idx, column_idx) = this->Get(row_idx, column_idx) / other.Get(row_idx, column_idx); d = 0.0;
} for (int i = 0; i < rows; i++) {
v[0][i] = rand() / RAND_MAX;
}
} }
}
} }
template <uint8_t rows, uint8_t columns> template <uint8_t rows, uint8_t columns>
float & Matrix<rows, columns>::Get(uint8_t row_index, uint8_t column_index) const{ void Matrix<rows, columns>::ElementMultiply(
return this->matrix[row_index][column_index]; const Matrix<rows, columns> &other, Matrix<rows, columns> &result) const {
} for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
template <uint8_t rows, uint8_t columns> result.Get(row_idx, column_idx) =
void Matrix<rows, columns>::GetRow(uint8_t row_index, Matrix<1, columns> & row) const{ this->Get(row_idx, column_idx) * other.Get(row_idx, column_idx);
row = Matrix<1, columns>(this->matrix[row_index]);
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::GetColumn(uint8_t column_index, Matrix<rows, 1> & column) const{
for(uint8_t row_idx{0}; row_idx < rows; row_idx++){
column.Get(0, column_index) = this->Get(row_idx, column_index);
} }
}
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::ElementDivide(const Matrix<rows, columns> &other,
Matrix<rows, columns> &result) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
result.Get(row_idx, column_idx) =
this->Get(row_idx, column_idx) / other.Get(row_idx, column_idx);
}
}
}
template <uint8_t rows, uint8_t columns>
float &Matrix<rows, columns>::Get(uint8_t row_index,
uint8_t column_index) const {
return this->matrix[row_index][column_index];
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::GetRow(uint8_t row_index,
Matrix<1, columns> &row) const {
row = Matrix<1, columns>(this->matrix[row_index]);
}
template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::GetColumn(uint8_t column_index,
Matrix<rows, 1> &column) const {
for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
column.Get(0, column_index) = this->Get(row_idx, column_index);
}
} }
template <uint8_t rows, uint8_t columns> template <uint8_t rows, uint8_t columns>
template <uint8_t vector_size> template <uint8_t vector_size>
float Matrix<rows, columns>::dotProduct(const Matrix<vector_size, 1> & vec1, const Matrix<vector_size, 1> & vec2){ float Matrix<rows, columns>::dotProduct(const Matrix<vector_size, 1> &vec1,
float sum{0}; const Matrix<vector_size, 1> &vec2) {
for(uint8_t i{0}; i < vector_size; i++){ float sum{0};
sum += vec1.Get(i, 0) * vec2.Get(i, 0); for (uint8_t i{0}; i < vector_size; i++) {
} sum += vec1.Get(i, 0) * vec2.Get(i, 0);
}
return sum; return sum;
} }
template <uint8_t rows, uint8_t columns> template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::zeroMatrix(){ void Matrix<rows, columns>::zeroMatrix() {
for(uint8_t row_idx{0}; row_idx < rows; row_idx++){ for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for(uint8_t column_idx{0}; column_idx < columns; column_idx++){ for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
this->matrix[row_idx][column_idx] = 0; this->matrix[row_idx][column_idx] = 0;
}
} }
}
} }
template <uint8_t rows, uint8_t columns> template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::matrixOfMinors(Matrix<rows, columns> & result) const{ void Matrix<rows, columns>::matrixOfMinors(
Matrix<rows-1, columns-1> minorMatrix{}; Matrix<rows, columns> &result) const {
Matrix<rows - 1, columns - 1> minorMatrix{};
for(uint8_t row_idx{0}; row_idx < rows; row_idx++){ for (uint8_t row_idx{0}; row_idx < rows; row_idx++) {
for(uint8_t column_idx{0}; column_idx < columns; column_idx++){ for (uint8_t column_idx{0}; column_idx < columns; column_idx++) {
this->minorMatrix(minorMatrix, row_idx, column_idx); this->minorMatrix(minorMatrix, row_idx, column_idx);
result.Get(row_idx, column_idx) = minorMatrix.Det(); result.Get(row_idx, column_idx) = minorMatrix.Det();
}
} }
}
} }
template <uint8_t rows, uint8_t columns> template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::minorMatrix(Matrix<rows-1, columns-1> & result, uint8_t row_idx, uint8_t column_idx) const{ void Matrix<rows, columns>::minorMatrix(Matrix<rows - 1, columns - 1> &result,
std::array<float, (rows-1)*(columns-1)> subArray{}; uint8_t row_idx,
uint8_t column_idx) const {
for(uint8_t row_iter{0}; row_iter < rows; row_iter++){ std::array<float, (rows - 1) * (columns - 1)> subArray{};
for(uint8_t column_iter{0}; column_iter < columns; column_iter++){
uint16_t i = static_cast<uint16_t>(row_iter) + static_cast<uint16_t>(column_iter);
if(row_iter == row_idx || column_iter == column_idx){
continue;
}
subArray[i] = this->Get(row_iter, column_iter);
}
}
result = Matrix<rows-1, columns-1>{subArray}; for (uint8_t row_iter{0}; row_iter < rows; row_iter++) {
for (uint8_t column_iter{0}; column_iter < columns; column_iter++) {
uint16_t i =
static_cast<uint16_t>(row_iter) + static_cast<uint16_t>(column_iter);
if (row_iter == row_idx || column_iter == column_idx) {
continue;
}
subArray[i] = this->Get(row_iter, column_iter);
}
}
result = Matrix<rows - 1, columns - 1>{subArray};
} }
template <uint8_t rows, uint8_t columns> template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::adjugate(Matrix<rows, columns> & result) const{ void Matrix<rows, columns>::adjugate(Matrix<rows, columns> &result) const {
for(uint8_t row_iter{0}; row_iter < rows; row_iter++){ for (uint8_t row_iter{0}; row_iter < rows; row_iter++) {
for(uint8_t column_iter{0}; column_iter < columns; column_iter++){ for (uint8_t column_iter{0}; column_iter < columns; column_iter++) {
float sign = ((row_iter + 1) % 2) ? -1 : 1; float sign = ((row_iter + 1) % 2) ? -1 : 1;
sign *= ((column_iter + 1) % 2) ? -1 : 1; sign *= ((column_iter + 1) % 2) ? -1 : 1;
result.Get(row_iter, column_iter) = this->Get(row_iter, column_iter) * sign; result.Get(row_iter, column_iter) =
} this->Get(row_iter, column_iter) * sign;
} }
}
} }
template <uint8_t rows, uint8_t columns> template <uint8_t rows, uint8_t columns>
void Matrix<rows, columns>::normalize(Matrix<rows, columns> & result) const{ void Matrix<rows, columns>::normalize(Matrix<rows, columns> &result) const {
float sum{0}; float sum{0};
for(uint8_t column_idx{0}; column_idx < rows; column_idx++){ for (uint8_t column_idx{0}; column_idx < rows; column_idx++) {
for(uint8_t row_idx{0}; row_idx < columns; row_idx++){ for (uint8_t row_idx{0}; row_idx < columns; row_idx++) {
sum += this->Get(row_idx, column_idx); sum += this->Get(row_idx, column_idx);
}
} }
}
if(sum == 0){ if (sum == 0) {
// this wouldn't do anything anyways // this wouldn't do anything anyways
result.zeroMatrix(); result.zeroMatrix();
return; return;
} }
for(uint8_t column_idx{0}; column_idx < rows; column_idx++){ for (uint8_t column_idx{0}; column_idx < rows; column_idx++) {
for(uint8_t row_idx{0}; row_idx < columns; row_idx++){ for (uint8_t row_idx{0}; row_idx < columns; row_idx++) {
result.Get(row_idx, column_idx) = this->Get(row_idx, column_idx) / sum; result.Get(row_idx, column_idx) = this->Get(row_idx, column_idx) / sum;
}
} }
}
} }

View File

@@ -12,6 +12,10 @@ FetchContent_Declare(
FetchContent_MakeAvailable(Catch2) FetchContent_MakeAvailable(Catch2)
add_executable(tests matrix-tests.cpp) add_executable(matrix-tests matrix-tests.cpp)
target_link_libraries(tests PRIVATE Catch2::Catch2WithMain) target_link_libraries(matrix-tests
PRIVATE
Matrix
Catch2::Catch2WithMain
)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,5 +1,9 @@
// include the unit test framework first
#include <catch2/catch_test_macros.hpp> #include <catch2/catch_test_macros.hpp>
// include the module you're going to test next
#include "Matrix.hpp"
unsigned int Factorial(unsigned int number) { unsigned int Factorial(unsigned int number) {
return number <= 1 ? number : Factorial(number - 1) * number; return number <= 1 ? number : Factorial(number - 1) * number;
} }