108 lines
4.6 KiB
Java
108 lines
4.6 KiB
Java
import processing.core.*;
|
|
|
|
import java.util.ArrayList;
|
|
import java.util.Collections;
|
|
import java.util.List;
|
|
|
|
import static processing.core.PApplet.*;
|
|
|
|
public class SLAM{
|
|
ArrayList<Line> lines = new ArrayList<>();
|
|
private static PApplet proc;
|
|
|
|
SLAM(PApplet processing){
|
|
proc = processing;
|
|
}
|
|
|
|
/**
|
|
* @param set the set to take a sub sample of
|
|
* @param indexRange the range within to take the sub sample
|
|
* @param subSampleSize the size of the sub sample
|
|
* @return A random subset of the set within an indexRange and of size: subSampleSize
|
|
*/
|
|
private List<Vector> randomSample(ArrayList<Vector> set, int indexRange, int subSampleSize){
|
|
// select a random laser data reading
|
|
int randomIdx = (int) proc.random(set.size() - 1); // index of starter reading
|
|
Vector point = set.get(randomIdx); // point of starter reading
|
|
|
|
// get a random sample of size numSampleReadings within degreeRange degrees of this laser reading.
|
|
List<Vector> subSample;
|
|
int rangeStart = randomIdx - indexRange >= 0 ? randomIdx - indexRange : 0;
|
|
int rangeEnd = randomIdx + indexRange < set.size() ? randomIdx + indexRange : set.size()-1;
|
|
subSample = set.subList(rangeStart, rangeEnd); // get the sub-sample
|
|
Collections.shuffle(subSample); // shuffle the list
|
|
List<Vector> randomSample = subSample.subList(0, rangeEnd-rangeStart); // get our random sample
|
|
if (!randomSample.contains(point)) {
|
|
randomSample.add(point);
|
|
}
|
|
|
|
return randomSample;
|
|
}
|
|
|
|
/**
|
|
* @param originalList the list which the randomSample of points originated from
|
|
* @param randomSample a random subsampling of points from the originalList
|
|
* @param maxRange the maximum distance away from the line of best fit of the subSample of points for a given point's consensus to count.
|
|
* @param consensus the number of points that have to give their consensus for the line of best fit to count as a valid feature.
|
|
*/
|
|
private void extractFeature(ArrayList<Vector> originalList, List<Vector> randomSample, float maxRange, int consensus){
|
|
// get a line of best fit for this list.
|
|
Line bestFit = new Line(randomSample);
|
|
int count = 0;
|
|
ArrayList<Vector> newRandomSample = new ArrayList<>();
|
|
for (Vector v : randomSample) {
|
|
if (bestFit.getDistance(v) <= maxRange) {
|
|
count++;
|
|
newRandomSample.add(v);
|
|
}
|
|
}
|
|
// if the count is above the consensus, add the line to our list and remove the points that gave the consensus.
|
|
if (count >= consensus) {
|
|
bestFit = new Line(newRandomSample.subList(0, newRandomSample.size() - 1));
|
|
lines.add(bestFit);
|
|
// remove the associated readings from the total available readings.
|
|
for (Vector v : newRandomSample) {
|
|
originalList.remove(v);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @param newPoints a new scan of points to perform feature detection on
|
|
* @param raysPerDegree How many degrees apart are each ray that was cast
|
|
*/
|
|
public void RANSAC(ArrayList<Vector> newPoints, float raysPerDegree){
|
|
float degreeRange = radians(10/2); // range to randomly sample readings within
|
|
int indexRange = (int) (degreeRange / raysPerDegree);
|
|
int numSampleReadings = 10; // number of readings to randomly sample
|
|
// constrain numSampleReadings so that it cant be higher than possible
|
|
if(numSampleReadings >= 2 * indexRange){
|
|
numSampleReadings = 2 * indexRange;
|
|
}
|
|
int consensus = 6; // the number of points that need to lie near a line for it to be considered valid.
|
|
float maxRange = 10; // the maximum distance a point can be away from the line for it to count as a consensus
|
|
|
|
// this for loop determines the maximum number of trials we're willing to do.
|
|
for(int j = 0; j < 20; j++) {
|
|
// if there aren't enough points left in the set to form a consensus, we're done.
|
|
if(newPoints.size() < consensus){
|
|
break;
|
|
}
|
|
|
|
// get a random sub sample of newPoints within the index range of a given size
|
|
List<Vector> randomSample = this.randomSample(newPoints, indexRange, numSampleReadings);
|
|
|
|
// check if the sub sample forms a valid line and remove the randomSample points if it does.
|
|
extractFeature(newPoints, randomSample, maxRange, consensus);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
public void drawLines(){
|
|
for(Line line : lines){
|
|
line.draw(proc);
|
|
}
|
|
}
|
|
|
|
} |