Implemented the RANSAC algorithm in the SLAM class.

This commit is contained in:
Quinn
2023-04-06 00:45:33 -05:00
parent dea6794c05
commit fc9d4e497b
3 changed files with 91 additions and 7 deletions

View File

@@ -1,19 +1,95 @@
import static processing.core.PApplet.radians;
import processing.core.*;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import static processing.core.PApplet.pow;
public class SLAM{
ArrayList<PVector> points = new ArrayList<>();
ArrayList<Line> lines = new ArrayList<>();
private static PApplet proc;
SLAM(PApplet processing){
proc = processing;
}
public void addPoints(ArrayList<PVector> newPoints){
Line line = new Line(proc, newPoints);
/**
* @param set the set to take a sub sample of
* @param indexRange the range within to take the sub sample
* @param subSampleSize the size of the sub sample
* @return A random subset of the set within an indexRange and of size: subSampleSize
*/
private List<PVector> randomSample(ArrayList<PVector> set, int indexRange, int subSampleSize){
// select a random laser data reading
int randomIdx = (int) proc.random(set.size() - 1); // index of starter reading
PVector point = set.get(randomIdx); // point of starter reading
// get a random sample of size numSampleReadings within degreeRange degrees of this laser reading.
List<PVector> subSample = set.subList(randomIdx - indexRange, randomIdx + indexRange); // get the sub-sample
Collections.shuffle(subSample); // shuffle the list
List<PVector> randomSample = subSample.subList(0, subSampleSize); // get our random sample
if (!randomSample.contains(point)) {
randomSample.add(point);
}
return randomSample;
}
/**
* @param originalList the list which the randomSample of points originated from
* @param randomSample a random subsampling of points from the originalList
* @param maxRange the maximum distance away from the line of best fit of the subSample of points for a given point's consensus to count.
* @param consensus the number of points that have to give their consensus for the line of best fit to count as a valid feature.
*/
private void extractFeature(ArrayList<PVector> originalList, List<PVector> randomSample, float maxRange, int consensus){
// get a line of best fit for this list.
Line bestFit = new Line(proc, randomSample);
int count = 0;
ArrayList<PVector> newRandomSample = new ArrayList<>();
for (PVector v : randomSample) {
if (bestFit.getDistance(v) <= maxRange) {
count++;
newRandomSample.add(v);
}
}
// if the count is above the consensus, add the line to our list and remove the points that gave the consensus.
if (count >= consensus) {
bestFit = new Line(proc, newRandomSample.subList(0, newRandomSample.size() - 1));
lines.add(bestFit);
// remove the associated readings from the total available readings.
for (PVector v : newRandomSample) {
originalList.remove(v);
}
}
}
public void RANSAC(ArrayList<PVector> newPoints, float raysPerDegree){
float degreeRange = radians(10/2); // range to randomly sample readings within
int indexRange = (int) (degreeRange / raysPerDegree);
int numSampleReadings = 10; // number of readings to randomly sample
// constrain numSampleReadings so that it cant be higher than possible
if(numSampleReadings >= 2 * indexRange){
numSampleReadings = 2 * indexRange;
}
int consensus = 6; // the number of points that need to lie near a line for it to be considered valid.
float maxRange = 10; // the maximum distance a point can be away from the line for it to count as a consensus
// this for loop determines the maximum number of trials we're willing to do.
for(int j = 0; j < 20; j++) {
// if there aren't enough points left in the set to form a consensus, we're done.
if(newPoints.size() < consensus){
break;
}
// get a random sub sample of newPoints within the index range of a given size
List<PVector> randomSample = this.randomSample(newPoints, indexRange, numSampleReadings);
// check if the sub sample forms a valid line and remove the randomSample points if it does.
extractFeature(newPoints, randomSample, maxRange, consensus);
}
}
}
@@ -36,13 +112,13 @@ class Line{
* attempt to find the line of best fit for the given points
* @param points the points to get the line of best for
*/
Line(PApplet processing, ArrayList<PVector> points){
Line(PApplet processing, List<PVector> points){
bestFit(points);
proc = processing;
}
// least squares line of best fit algorithm
private void bestFit(ArrayList<PVector> points){
private void bestFit(List<PVector> points){
// get the mean of all the points
PVector mean = new PVector();
for(PVector point : points){
@@ -75,4 +151,12 @@ class Line{
public PVector getPosition(){
return position;
}
/**
* @param point
* @return the smallest distance from the point to this line
*/
public float getDistance(PVector point){
return (point.sub(position).cross(direction)).mag() / direction.mag();
}
}