Wrote tests for the Vector class

This commit is contained in:
Quinn
2023-04-06 10:39:31 -05:00
parent fc9d4e497b
commit 7438d0f64e
19 changed files with 328 additions and 106 deletions

View File

@@ -1,11 +1,10 @@
import static processing.core.PApplet.radians;
import processing.core.*;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import static processing.core.PApplet.pow;
import static processing.core.PApplet.*;
public class SLAM{
ArrayList<Line> lines = new ArrayList<>();
@@ -21,15 +20,18 @@ public class SLAM{
* @param subSampleSize the size of the sub sample
* @return A random subset of the set within an indexRange and of size: subSampleSize
*/
private List<PVector> randomSample(ArrayList<PVector> set, int indexRange, int subSampleSize){
private List<Vector> randomSample(ArrayList<Vector> set, int indexRange, int subSampleSize){
// select a random laser data reading
int randomIdx = (int) proc.random(set.size() - 1); // index of starter reading
PVector point = set.get(randomIdx); // point of starter reading
Vector point = set.get(randomIdx); // point of starter reading
// get a random sample of size numSampleReadings within degreeRange degrees of this laser reading.
List<PVector> subSample = set.subList(randomIdx - indexRange, randomIdx + indexRange); // get the sub-sample
List<Vector> subSample;
int rangeStart = randomIdx - indexRange >= 0 ? randomIdx - indexRange : 0;
int rangeEnd = randomIdx + indexRange < set.size() ? randomIdx + indexRange : set.size()-1;
subSample = set.subList(rangeStart, rangeEnd); // get the sub-sample
Collections.shuffle(subSample); // shuffle the list
List<PVector> randomSample = subSample.subList(0, subSampleSize); // get our random sample
List<Vector> randomSample = subSample.subList(0, rangeEnd-rangeStart); // get our random sample
if (!randomSample.contains(point)) {
randomSample.add(point);
}
@@ -43,12 +45,12 @@ public class SLAM{
* @param maxRange the maximum distance away from the line of best fit of the subSample of points for a given point's consensus to count.
* @param consensus the number of points that have to give their consensus for the line of best fit to count as a valid feature.
*/
private void extractFeature(ArrayList<PVector> originalList, List<PVector> randomSample, float maxRange, int consensus){
private void extractFeature(ArrayList<Vector> originalList, List<Vector> randomSample, float maxRange, int consensus){
// get a line of best fit for this list.
Line bestFit = new Line(proc, randomSample);
int count = 0;
ArrayList<PVector> newRandomSample = new ArrayList<>();
for (PVector v : randomSample) {
ArrayList<Vector> newRandomSample = new ArrayList<>();
for (Vector v : randomSample) {
if (bestFit.getDistance(v) <= maxRange) {
count++;
newRandomSample.add(v);
@@ -59,12 +61,17 @@ public class SLAM{
bestFit = new Line(proc, newRandomSample.subList(0, newRandomSample.size() - 1));
lines.add(bestFit);
// remove the associated readings from the total available readings.
for (PVector v : newRandomSample) {
for (Vector v : newRandomSample) {
originalList.remove(v);
}
}
}
public void RANSAC(ArrayList<PVector> newPoints, float raysPerDegree){
/**
* @param newPoints a new scan of points to perform feature detection on
* @param raysPerDegree How many degrees apart are each ray that was cast
*/
public void RANSAC(ArrayList<Vector> newPoints, float raysPerDegree){
float degreeRange = radians(10/2); // range to randomly sample readings within
int indexRange = (int) (degreeRange / raysPerDegree);
int numSampleReadings = 10; // number of readings to randomly sample
@@ -83,7 +90,7 @@ public class SLAM{
}
// get a random sub sample of newPoints within the index range of a given size
List<PVector> randomSample = this.randomSample(newPoints, indexRange, numSampleReadings);
List<Vector> randomSample = this.randomSample(newPoints, indexRange, numSampleReadings);
// check if the sub sample forms a valid line and remove the randomSample points if it does.
extractFeature(newPoints, randomSample, maxRange, consensus);
@@ -92,71 +99,10 @@ public class SLAM{
}
}
class Line{
PVector direction = new PVector(0,0);
PVector position = new PVector(0,0);
private static PApplet proc;
Line(PApplet processing){
proc = processing;
}
Line(PApplet processing, PVector direction, PVector position){
this.direction = direction;
this.position = position;
proc = processing;
}
/**
* attempt to find the line of best fit for the given points
* @param points the points to get the line of best for
*/
Line(PApplet processing, List<PVector> points){
bestFit(points);
proc = processing;
}
// least squares line of best fit algorithm
private void bestFit(List<PVector> points){
// get the mean of all the points
PVector mean = new PVector();
for(PVector point : points){
mean.add(point);
public void drawLines(){
for(Line line : lines){
line.draw();
}
mean.div(points.size());
// this section calculates the direction vector of the line of best fit
PVector direction = new PVector();
// get the rise and run of the line of best fit
for(PVector point : points){
direction.y += (point.x - mean.x)*(point.y - mean.y); // rise
direction.x += pow((point.x - mean.x),2);
}
this.position = mean;
this.direction = direction;
}
public PVector getSlopeIntForm(){
float slope = direction.y / direction.x;
float intercept = position.y - slope * position.x;
return new PVector(slope, intercept);
}
public PVector getDirection(){
return direction;
}
public PVector getPosition(){
return position;
}
/**
* @param point
* @return the smallest distance from the point to this line
*/
public float getDistance(PVector point){
return (point.sub(position).cross(direction)).mag() / direction.mag();
}
}